A Docking Study of UDP-N-Acetylglucosamine Enolpyruvyl Transferase from Haemophilus influenzae in Complex with Inhibitors

  • Yoon, Hye-Jin (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Mikami, Bunzo (Laboratory of Quality Design and Exploitation, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University) ;
  • Park, Hyun-Ju (College of Pharmacy, Sungkyunkwan University) ;
  • Yoo, Ja-Kyung (College of Pharmacy, Sungkyunkwan University) ;
  • Suh, Se-Won (Department of Chemistry, College of Natural Sciences, Seoul National University)
  • Published : 2007.12.31

Abstract

UDP-N-acetylglucosamine enolpyruvyl transferase (MurA; EC 2.5.1.7) catalyzes the first committed step of peptidoglycan biosynthesis in bacteria, i.e., transfer of enolpyruvate from phosphoenolpyruvate to UDP-N-acetyl-glucosamine. Because the crystallization condition contained a high concentration of ammonium sulfate, our inhibitor binding studies were not successful. Therefore, we employed a docking approach to investigate the inhibitor binding. Our results will be useful in structure-based design of specific inhibitors of MurA for antibacterial discovery.

Keywords

References

  1. Bugg, T. D. and Walsh, C. T., Nat. Prod. Rep., 9, 199 (1992) https://doi.org/10.1039/np9920900199
  2. Schonbrunn, E., Sack, S., Eschenburg, S., Perrakis, A., Krekel, F., Amrhein, N. and Mandelkow, E., Structure, 4, 1065 (1996) https://doi.org/10.1016/S0969-2126(96)00113-X
  3. Eschenburg, S., Kabsch, W., Healy, M. L. and Schonbrunn, E., Journal of Biological Chemistry, 278, 49215 (2003) https://doi.org/10.1074/jbc.M309741200
  4. Eschenburg, S., Priestman, M. and Schonbrunn, E., Journal of Biological Chemistry, 280, 3757 (2005) https://doi.org/10.1074/jbc.M411325200
  5. Eschenburg, S. and Schonbrunn, E., Proteins-Structure Function and Genetics, 40, 290 (2000)
  6. Skarzynski, T., Mistry, A., Wonacott, A., Hutchinson, S. E., Kelly, V. A. and Duncan, K., Structure, 4, 1465 (1996) https://doi.org/10.1016/S0969-2126(96)00153-0
  7. Skarzynski, T., Kim, D. H., Lees, W. J., Walsh, C. T. and Duncan, K., Biochemistry, 37, 2572 (1998) https://doi.org/10.1021/bi9722608
  8. Yoon, H. J., Ku, M. J., Ahn, H. J., Lee, B. I., Mikami, B. and Suh, S. W., Molecules and Cells, 19, 398 (2005)
  9. El Zoeiby, A., Sanschagrin, F. and Levesque, R. C., Mol. Microbiol., 47, 1 (2003) https://doi.org/10.1046/j.1365-2958.2003.03289.x
  10. Kahan, F. M., Kahan, J. S., Cassidy, P. J. and Kropp, H., Ann. N. Y. Acad. Sci., 235, 364 (1974) https://doi.org/10.1111/j.1749-6632.1974.tb43277.x
  11. Baum, E. Z., Montenegro, D. A., Licata, L., Turchi, I., Webb, G. C., Foleno, B. D. and Bush, K., Antimicrobial Agents and Chemotherapy, 45, 3182 (2001) https://doi.org/10.1128/AAC.45.11.3182-3188.2001
  12. DeVito, J. A., Mills, J. A., Liu, V. G., Agarwal, A., Sizemore, C. F., Yao, Z., Stoughton, D. M., Cappiello, M. G., Barbosa, M. D., Foster, L. A. and Pompliano, D. L., Nat. Biotechnol., 20, 478 (2002) https://doi.org/10.1038/nbt0502-478
  13. Molina-Lopez, J., Sanschagrin, F. and Levesque, R. C., Peptides, 27, 3115 (2006)
  14. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. and Warren, G. L., Acta Crystallographica Section D-Biological Crystallography, 54, 905 (1998)
  15. Jones, T. A., Zou, J. Y., Cowan, S. W. and Kjeldgaard, M., Acta Crystallog. Sect. A, 47, 110 (1991) https://doi.org/10.1107/S0108767390010224
  16. Sybyl. 6.8 ed.; SYBYL molecular modeling software. Tripos Inc, St. Louis, MO (2000)