• Title/Summary/Keyword: N distribution

Search Result 4,411, Processing Time 0.03 seconds

A Lattice Distribution

  • Chung, Han-Young
    • Journal of the Korean Statistical Society
    • /
    • v.10
    • /
    • pp.97-104
    • /
    • 1981
  • It is shown that a lattice distribution defined on a set of n lattice points $L(n,\delta) = {\delta,\delta+1,...,\delta+n-1}$ is a distribution induced from the distribution of convolution of independently and identically distributed (i.i.d.) uniform [0,1] random variables. Also the m-th moment of the lattice distribution is obtained in a quite different approach from Park and Chung (1978). It is verified that the distribution of the sum of n i.i.d. uniform [0,1] random variables is completely determined by the lattice distribution on $L(n,\delta)$ and the uniform distribution on [0,1]. The factorial mement generating function, factorial moments, and moments are also obtained.

  • PDF

ON CHARACTERIZATIONS OF THE POWER DISTRIBUTION VIA THE IDENTICAL HAZARD RATE OF LOWER RECORD VALUES

  • Lee, Min-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.337-340
    • /
    • 2017
  • In this article, we present characterizations of the power distribution via the identical hazard rate of lower record values that $X_n$ has the power distribution if and only if for some fixed n, $n{\geq}1$, the hazard rate $h_W$ of $W=X_{L(n+1)}/X_{L(n)}$ is the same as the hazard rate h of $X_n$ or the hazard rate $h_V$ of $V=X_{L(n+2)}/X_{L(n+1)}$.

A CHARACTERIZATION OF GAMMA DISTRIBUTION BY INDEPENDENT PROPERTY

  • Lee, Min-Young;Lim, Eun-Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Let {$X_n,\;n{\geq}1}$ be a sequence of independent identically distributed(i.i.d.) sequence of positive random variables with common absolutely continuous distribution function(cdf) F(x) and probability density function(pdf) f(x) and $E(X^2)<{\infty}$. The random variables $\frac{X_i{\cdot}X_j}{(\Sigma^n_{k=1}X_k)^{2}}$ and $\Sigma^n_{k=1}X_k$ are independent for $1{\leq}i if and only if {$X_n,\;n{\geq}1}$ have gamma distribution.

  • PDF

GENERALIZED CONVOLUTION OF UNIFORM DISTRIBUTIONS

  • Kang, Jong-Seong;Kim, Sung-Lai;Kim, Yang-Hee;Jang, Yu-Seon
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1573-1581
    • /
    • 2010
  • we investigate the n-fold convolution of the uniform distributions. First, we are concerned with the explicit distribution function of the partial sum ${\zeta}_n$ when the random variables are independent and has identically uniform distribution, next, we determine the n-fold convolution distribution of ${\zeta}_n$ when the identically distributed condition is not satisfied.

CHARACTERIZATIONS OF THE EXPONENTIAL DISTRIBUTION BY RECORD VALUES

  • Chang, Se-Kyung;Lee, Min-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.375-381
    • /
    • 2006
  • This paper presents characterizations based on the identical distribution and the finite moments of the exponential distribution by record values. We prove that $X{\in}EXP({\sigma})$, ${\sigma}$>0, if and only if $X_{U(n+k)}-X_{U(n)}$ and $X_{U(n)}-X_{U(n-k)}$ for n > 1 and $k{\geq}1$ are identically distributed. Also, we show that $X{\in}EXP({\sigma})$, ${\sigma}$>0, if and only if $E(X_{U(n+k)}-X_{U(n)})=E(X_{U(n)}-X_{U(n-k)})$ for n>1 and $k{\geq}1$.

  • PDF

ON CHARACTERIZATIONS OF THE WEIBULL DISTRIBUTION BY THE INDEPENDENT PROPERTY OF RECORD VALUES

  • Lee, Min-Young;Lim, Eun-Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.245-250
    • /
    • 2010
  • We present characterizations of the Weibull distribution by the independent property of record values that F(x) has a Weibull distribution if and only if $\frac{X_{U(m)}}{X_{U(n)}}$ and $X_{U(n)}$ or $\frac{X_{U(n)}}{X_{U(n)}{\pm}X_{U(m)}}$ and $X_{U(n)}$ are independent for $1{\leq}m.

CHARACTERIZATIONS OF BETA DISTRIBUTION OF THE FIRST KIND BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young;Chang, Se-Kyung
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.441-446
    • /
    • 2003
  • Let { $X_{n}$ , n $\geq$ 1} be a sequence of independent and identically distributed random variables with a common continuous distribution function F(x) and probability density function f(x). Let $Y_{n}$ = max{ $X_1$, $X_2$, …, $X_{n}$ } for n $\geq$ 1. We say $X_{j}$ is an upper record value of { $X_{n}$ , n$\geq$1} if $Y_{j}$ > $Y_{j-1}$, j > 1. The indices at which the upper record values occur are given by the record times {u(n)}, n$\geq$1, where u(n) = min{j|j>u(n-1), $X_{j}$ > $X_{u}$ (n-1), n$\geq$2} and u(1) = 1. We call the random variable X $\in$ Beta (1, c) if the corresponding probability cumulative function F(x) of x is of the form F(x) = 1-(1-x)$^{c}$ , c>0, 0$\leq$x$\leq$1. In this paper, we will give a characterization of the beta distribution of the first kind by considering conditional expectations of record values.s.

THE CONTINUOUS DENSITY FUNCTION OF THE LIMITING SPECTRAL DISTRIBUTION

  • Choi, Sang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.515-521
    • /
    • 2010
  • In multivariate analysis, the inversion formula of the Stieltjes transform is used to find the density of a spectral distribution of random matrices of sample covariance type. Let $B_n\;=\;\frac{1}{N}Y_nY_n^TT_n$ where $Y_n\;=\;[Y_{ij}]_{n\;{\times}\;N}$ is with independent, identically distributed entries and $T_n$ is an $n\;{\times}\;n$ symmetric non-negative definite random matrix independent of the $Y_{ij}$'s. In the present paper, using the inversion formula of the Stieltjes transform, we will find that the limiting distribution of $B_n$ has a continuous density function away from zero.

CHARACTERIZATIONS OF GAMMA DISTRIBUTION

  • Lee, Min-Young;Lim, Eun-Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.411-418
    • /
    • 2007
  • Let $X_1$, ${\cdots}$, $X_n$ be nondegenerate and positive independent identically distributed(i.i.d.) random variables with common absolutely continuous distribution function F(x) and $E(X^2)$ < ${\infty}$. The random variables $X_1+{\cdots}+X_n$ and $\frac{X_1+{\cdots}+X_m}{X_1+{\cdots}+X_n}$are independent for 1 $1{\leq}$ m < n if and only if $X_1$, ${\cdots}$, $X_n$ have gamma distribution.

  • PDF

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF THE EXPONENTIAL DISTRIBUTION BY RECORD VALUES

  • LEE, MIN-YOUNG;CHANG, SE-KYUNG
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.463-469
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the exponential distribution. Let $\{X_n,\;n{\geq}1\}$ be a sequence of independent and identically distributed random variables with a common continuous distribution function F(x) and probability density function(pdf) f(x). Let $Y_n=max\{X_1,\;X_2,\;{\cdots},\;X_n\}$ for $n{\geq}1$. We say $X_j$ is an upper record value of $\{X_n,\;n{\geq}1\}$, if $Y_j>Y_{j-1}$, j > 1. The indices at which the upper record values occur are given by the record times {u(n)}, $n{\geq}1$, where u(n)=min\{j{\mid}j>u(n-1),\;X_j>X_{u(n-1)},\;n{\geq}2\} and u(1) = 1. Suppose $X{\in}Exp(1)$. Then $\Large{E\;\left.{\frac{X^r_{u(m)}}{X^{s+1}_{u(n)}}}\right)=\frac{1}{s}E\;\left.{\frac{X^r_{u(m)}}{X^s_{u(n-1)}}}\right)-\frac{1}{s}E\;\left.{\frac{X^r_{u(m)}}{X^s_{u(n)}}}\right)}$ and $\Large{E\;\left.{\frac{X^{r+1}_{u(m)}}{X^s_{u(n)}}}\right)=\frac{1}{(r+2)}E\;\left.{\frac{X^{r+2}_{u(m)}}{X^s_{u(n-1)}}}\right)-\frac{1}{(r+2)}E\;\left.{\frac{X^{r+2}_{u(m-1)}}{X^s_{u(n-1)}}}\right)}$.

  • PDF