• Title/Summary/Keyword: N/F

Search Result 5,799, Processing Time 0.034 seconds

A CHARACTERIZATION OF CONCENTRIC HYPERSPHERES IN ℝn

  • Kim, Dong-Soo;Kim, Young Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.531-538
    • /
    • 2014
  • Concentric hyperspheres in the n-dimensional Euclidean space $\mathbb{R}^n$ are the level hypersurfaces of a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$. The magnitude $||{\nabla}f||$ of the gradient of such a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ is a function of the function f. We are interested in the converse problem. As a result, we show that if the magnitude of the gradient of a function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ with isolated critical points is a function of f itself, then f is either a radial function or a function of a linear function. That is, the level hypersurfaces are either concentric hyperspheres or parallel hyperplanes. As a corollary, we see that if the magnitude of a conservative vector field with isolated singularities on $\mathbb{R}^n$ is a function of its scalar potential, then either it is a central vector field or it has constant direction.

RELATIVE PROJECTIVITY AND RELATED RESULTS

  • Toroghy, H.Ansari
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.419-426
    • /
    • 2004
  • Let R be a commutative Noetherian ring and let M be an Artinian R-module. Let M${\subseteq}$M′ be submodules of M. Suppose F is an R-module which is projective relative to M. Then it is shown that $Att_{R}$($Hom_{A}$ (F,M′) :$Hom_{A}$(F,M) $In^n$), n ${\in}$N and $Att_{R}$($Hom_{A}$(F,M′) :$Hom_{A}$(F,M) In$^n$ $Hom_{A}$(F,M") :$Hom_{A}$(F,M) $In^n$),n ${\in}$ N are ultimately constant.

STABILITY OF AN n-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATION

  • Jin, Sun-Sook;Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.397-409
    • /
    • 2018
  • In this paper, we investigate the generalized Hyers-Ulam stability of the functional equation $$f\({\sum\limits_{i=1}^{n}}x_i\)+{\sum\limits_{1{\leq}i<j{\leq}n}}f(x_i-x_j)-n{\sum\limits_{i=1}^{n}f(x_i)=0$$ for integer values of n such that $n{\geq}2$, where f is a mapping from a vector space V to a Banach space Y.

Longest Paths and Cycles in Faulty Star Graphs (고장난 스타 그래프에서 최장 경로와 사이클)

  • 박정흠;김희철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.742-744
    • /
    • 2001
  • 이 논문은 n-차원 스타 그래프 S$_{n}$, n$\geq$4에서 정점과 에지 고장의 수가 n-3 이하일 때, 임의의 두 고장이 아닌 정점 사이에 길이가 두 정점의 색이 같으면 n!-2f$_{v}$ -2 이상이고, 색이 다르면 n!-2f$_{v}$ -1 이상인 경로가 존재함을 보인다. 여기서 f$_{v}$ 는 고장인 정점의 수이다. 이 결과를 이용하면 고장의 수가 n-3이하일 때, 임의의 고장이 아닌 에지를 지나는 길이 n!-2f$_{v}$ 이상인 사이클을 설계할 수 있다.

  • PDF

BINDING NUMBER AND HAMILTONIAN (g, f)-FACTORS IN GRAPHS

  • Cai, Jiansheng;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.383-388
    • /
    • 2007
  • A (g, f)-factor F of a graph G is Called a Hamiltonian (g, f)-factor if F contains a Hamiltonian cycle. The binding number of G is defined by $bind(G)\;=\;{min}\;\{\;{\frac{{\mid}N_GX{\mid}}{{\mid}X{\mid}}}\;{\mid}\;{\emptyset}\;{\neq}\;X\;{\subset}\;V(G)},\;{N_G(X)\;{\neq}\;V(G)}\;\}$. Let G be a connected graph, and let a and b be integers such that $4\;{\leq}\;a\;<\;b$. Let g, f be positive integer-valued functions defined on V(G) such that $a\;{\leq}\;g(x)\;<\;f(x)\;{\leq}\;b$ for every $x\;{\in}\;V(G)$. In this paper, it is proved that if $bind(G)\;{\geq}\;{\frac{(a+b-5)(n-1)}{(a-2)n-3(a+b-5)},}\;{\nu}(G)\;{\geq}\;{\frac{(a+b-5)^2}{a-2}}$ and for any nonempty independent subset X of V(G), ${\mid}\;N_{G}(X)\;{\mid}\;{\geq}\;{\frac{(b-3)n+(2a+2b-9){\mid}X{\mid}}{a+b-5}}$, then G has a Hamiltonian (g, f)-factor.

Synthesis of -4,9-Dione Derivatives (벤조-[f]-인돌-4, 9-디온 유도체의 합성)

  • Lee, Ji-Young;Suh, Myung-Eun
    • YAKHAK HOEJI
    • /
    • v.34 no.1
    • /
    • pp.15-21
    • /
    • 1990
  • -4,9-dione derivatives were prepared from $2-chloro-3-({\alpha}-accetyl-{\alpha}-ethoxycarbonyl-methyl)-1,4-naphthoquinone$ and 2-chloro-3-N-phenylamino-1,4-naphthoquinone. $2-Chloro-3-({\alpha}-acetyl-{\alpha}-ethoxycarbonyl-methyl)-1,4-naphthoquinone$ was reacted with amines to give $2-amino-3-({\alpha}-acetyl-{\alpha}-ethoxycarbonyl-methyl)-1,4-naphthoquinone$ derivatives. Subsequent treatment of $2-amino-3-({\alpha}-acetyl-{\alpha}-ethoxycarbonyl-methyl)-1,4-naphthoquinone$ with sodium ethoxide gave -4,9-dione derivatives. When 2-chloro-3-N-phenylamino-1,4-naphthoquinone reacted with sodium ${\alpha}-cyano$ ethyl acetate, 2-amino-3-ethoxycarbonyl-N-phenyl--4,9-dione was obtained. However, with sodium diethyl malonate, not -4,9-dione but 2-chloro-3-bis-(methoxycarbonyl)-methyl-2H-3-N-phenylamino-1,4-naphthoquinone was obtained.

  • PDF

Lebesgue-Stieltjes Measures and Differentiation of Measures

  • Jeon, Won-Kee
    • Honam Mathematical Journal
    • /
    • v.8 no.1
    • /
    • pp.51-74
    • /
    • 1986
  • The thery of measure is significant in that we extend from it to the theory of integration. AS specific metric outer measures we can take Hausdorff outer measure and Lebesgue-Stieltjes outer measure connecting measure with monotone functions.([12]) The purpose of this paper is to find some properties of Lebesgue-Stieltjes measure by extending it from $R^1$ to $R^n(n{\geq}1)$ $({\S}3)$ and differentiation of the integral defined by Borel measure $({\S}4)$. If in detail, as follows. We proved that if $_n{\lambda}_{f}^{\ast}$ is Lebesgue-Stieltjes outer measure defined on a finite monotone increasing function $f:R{\rightarrow}R$ with the right continuity, then $$_n{\lambda}_{f}^{\ast}(I)=\prod_{j=1}^{n}(f(b_j)-f(a_j))$$, where $I={(x_1,...,x_n){\mid}a_j$<$x_j{\leq}b_j,\;j=1,...,n}$. (Theorem 3.6). We've reached the conclusion of an extension of Lebesgue Differentiation Theorem in the course of proving that the class of continuous function on $R^n$ with compact support is dense in $L^p(d{\mu})$ ($1{\leq$}p<$\infty$) (Proposition 2.4). That is, if f is locally $\mu$-integrable on $R^n$, then $\lim_{h\to\0}\left(\frac{1}{{\mu}(Q_x(h))}\right)\int_{Qx(h)}f\;d{\mu}=f(x)\;a.e.(\mu)$.

  • PDF

Role of CH2F2 and N-2 Flow Rates on the Etch Characteristics of Dielectric Hard-mask Layer to Extreme Ultra-violet Resist Pattern in CH2F2/N2/Ar Capacitively Coupled Plasmas

  • Kwon, B.S.;Lee, J.H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.210-210
    • /
    • 2011
  • The effects of CH2F2 and N2 gas flow rates on the etch selectivity of silicon nitride (Si3N4) layers to extreme ultra-violet (EUV) resist and the variation of the line edge roughness (LER) of the EUV resist and Si3N4 pattern were investigated during etching of a Si3N4/EUV resist structure in dual-frequency superimposed CH2F2/N2/Ar capacitive coupled plasmas (DFS-CCP). The flow rates of CH2F2 and N2 gases played a critical role in determining the process window for ultra-high etch selectivity of Si3N4/EUV resist due to disproportionate changes in the degree of polymerization on the Si3N4 and EUV resist surfaces. Increasing the CH2F2 flow rate resulted in a smaller steady state CHxFy thickness on the Si3N4 and, in turn, enhanced the Si3N4 etch rate due to enhanced SiF4 formation, while a CHxFy layer was deposited on the EUV resist surface protecting the resist under certain N2 flow conditions. The LER values of the etched resist tended to increase at higher CH2F2 flow rates compared to the lower CH2F2 flow rates that resulted from the increased degree of polymerization.

  • PDF

THE APPROXIMATION FOR FUNCTIONAL EQUATION ORIGINATING FROM A CUBIC FUNCTIO

  • Lee, Eun-Hwi;Chang, Ick-Soon;Jung, Yong-Soo
    • Honam Mathematical Journal
    • /
    • v.30 no.2
    • /
    • pp.233-246
    • /
    • 2008
  • In this paper, we obtain the general solution of the following cubic type functional equation and establish the stability of this equation (0.1) $kf({{\sum}\limits^{n-1}_{j=1}}x_j+kx_n)+kf({{\sum}\limits^{n-1}_{j=1}}x_j-kx_n)+2{{\sum}\limits^{n-1}_{j=1}}f(kx_j)+(k^3-1)(n-1)[f(x_1)+f(-x_1)]=2kf({\sum\limits^{n-1}_{j=1}}x_j)=K^3{\sum\limits^{n-1}_{j=1}[f(x_j+x_n)+f(x_j-x_n)]$ for any integers k and n with k ${\geq}$ 2 and n ${\geq}$ 3.

AN EXTENSION OF GOTTLIEB GROUPS

  • Lee, Kee-Young;Woo, Moo-Ha
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.653-659
    • /
    • 1997
  • In this paper, we extend the Gottlieb groups of a space to the Gottlieb groups of a map and show some properties of those groups. Especially, We show the 2nd Gottlieb group of a map is contained in the center of the homotopy group of the map and show $G_n(F) = \pi_n(f)$ for an H-map f between H-spaces. We also show the Gottlieb subgroups $G_n(A), G_n(X) and G_n(f)$ make a sequence if the map $f : A \to X$ has a right homotopy inverse.

  • PDF