• Title/Summary/Keyword: Myricetin

Search Result 101, Processing Time 0.027 seconds

Inhibitor Design for Human Heat Shock Protein 70 ATPase Domain by Pharmacophore-based in silico Screening

  • Lee, Jee-Young;Jung, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1717-1722
    • /
    • 2008
  • The 70 kDa heat-shock protein (Hsp70) involved in various cellular functions, such as protein folding, translocation and degradation, regulates apoptosis in cancer cells. Recently, it has been reported that the green tea flavonoid (−)-epigallocatechin 3-gallate (EGCG) induces apoptosis in numerous cancer cell lines and could inhibit the anti-apoptotic effect of human Hsp70 ATPase domain (hATPase). In the present study, docking model between EGCG and hATPase was determined using automated docking study. Epi-gallo moiety in EGCG participated in hydrogen bonds with side chain of K71 and T204, and has metal chelating interaction with hATPase. Hydroxyl group of catechin moiety also participated in metal chelating hydrogen bond. Gallate moiety had two hydrogen bondings with side chains of E268 and K271, and hydrophobic interaction with Y15. Based on this docking model, we determined two pharmacophore maps consisted of six or seven features, including three or four hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. We searched a flavonoid database including 23 naturally occurring flavonoids and 10 polyphenolic flavonoids with two maps, and myricetin and GC were hit by map I. Three hydroxyl groups of B-ring in myricetin and gallo moiety of GC formed important hydrogen bonds with hATPase. 7-OH of A-ring in myricetin and OH group of catechin moiety in GC are hydrogen bond donors similar to gallate moiety in EGCG. From these results, it can be proposed that myricetin and GC can be potent inhibitors of hATPase. This study will be helpful to understand the mechanism of inhibition of hATPase by EGCG and give insights to develop potent inhibitors of hATPase.

Phenolic Compounds from Seeds of Astragalus sinicus and Its Antioxidative Activities (자운영(Astragalus sinicus)종자의 페놀성 화합물 및 항산화 활성)

  • Yeom, Seung-Hwan;Kim, Min-Kee;Kim, Hyun-Jung;Shim, Jae-Geul;Lee, Jae-Hee;Lee, Min-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.4 s.135
    • /
    • pp.344-351
    • /
    • 2003
  • Phytochemical examination of seeds of Astragalus sinicus has led to the isolation and characterization of kaempferol $3-O-{\beta}-D-apiofuranosyl-(1{\rightarrow}2)-{\alpha}-L-rhamnopyranosyl-(1{\rightarrow}6)-{\beta}-D-glucopyranoside$ (1), quercetin $3-O-{\beta}-D-xylopyranosyl-(1{\rightarrow}2)-{\beta}-D-glucopyranoside$ (2), ampelopsin (3), ampelopsin $3'-O-{\beta}-D-xylopyranoside$ (4), ampelopsin $3'-O-{\beta}-Dxylopyranoside$ (5), myricetin (6), myricetin $3'-O-{\beta}-D-glucopyranoside$ (7), myricetin $3'-O-{\beta}-D-xylopyranoside$ (8). Antioxidative activity of these compounds was determined by measuring the radical scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. Flavanonols(3,4, and 5) showed potent antioxidative activity.

Antioxidant effect of myricetin with other antioxidants, taurine and $\beta$-carotene on mouse melanoma cell

  • Yu, Ji-Sun;Kim, An-Keun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.69-69
    • /
    • 2003
  • There are now increasing evidences that free radicals and reactive oxygen species are involved in a variety of pathological events. Reactive Oxygen Species (ROS) are produced during normal cellular function. ROS lead to lipid peroxidation, massive protein oxdiation and degradation. Under normal conditions, antioxidant are substnaces that either directly or indirectly protect cell against adverse effect of ROS. several biologically important compound include ${\beta}$-carotene, taruine and flavonoids reported have antioxidant function. The various antioxidant either scavange superoxide and free radicals or stimulate the detoxification mechanisms within cells resulting in increased detoxification of free radicals formation and thus in prevention of many pathophysiologic processes. This study carried out to investigate the antioxidant activity of flavonoids, myricetin with other antioxidants, ${\beta}$-carotene and taurine on B16Fl0. In order to investigate the efficacy of antioxidant activity, we measured cell viability, antioxidant enzyme activity (SOD, GPX, CAT) and intracellular reactive oxygen intermediate (ROI). In this results, we show that these flavonoids with other antioxidant substrates are increased antioxidant activity level.

  • PDF

Analysis of flavonoids in the mature fruit of Vaccinium uliginosum L. of China

  • Hua, Lian Li;Yoshitama, Kunijiro
    • Advances in Traditional Medicine
    • /
    • v.6 no.1
    • /
    • pp.65-67
    • /
    • 2006
  • In this study, a new extraction method was developed and two kinds of flavonoids were extracted from the mature fruit of Vaccinium uliginosum L. of China. These two kinds of flavonoids were analyzed by spectral and identified by high-performance liquid chromatography (HPLC) and UV/Vis. The extract of the fruit was total acid hydrolyzed. TLC chromatography was subsequently employed to identify the hydrolysate. Two kinds of aglycone flavonoids, quercetin and myricetin, were identified. At the same time PC chromatography was used to identify the monomer sugar in the flavonoids and it was verified as glucose. HPLC, UV/Vis, and Mass spectrum analyses revealed that the flavonoids were quercetin 3-monoglucosides and myricetin 3-monoglucosides.

The Isolation of the Inhibitory Constitutents on Melanin Polymer Formation from the Leaves of Cercis chinensis (박태기나무의 잎으로부터 피부멜라닌 색소생성 억제성분의 분리)

  • Kim, So-Young;Kim, Jin-Joon;Jang, Tae-Soo;Chung, See-Ryun;Lee, Seung-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.4
    • /
    • pp.397-403
    • /
    • 1999
  • Tyrosinase plays an important role in the process of melanin polymer biosynthesis. Therefore, the enzyme inhibitors have been of great concern as cosmetics to have skin-whitening effects on the local hyperpigmentation. During the search for new inhibitory compounds on melanin polymer biosynthesis from natural sources, MeOH extracts of 589 higher plants were tested for the inhibitory effect on tyrosinase activity by the muschroom tyrosinase assay in vitro. Among plants tested, the leaves of Cercis chinensis exhibited potent inhibitory effect on mushroom tyrosinase activity. Subsequently seven active compounds were isolated from the ethyl acetate soluble part of acetone extract of the leaves of C. chinensis by the activity guided fractionation monitoring the inhibitory effect on tyrosinase activity. Their chemical structures were identified as $kaempferol-3-0-{\alpha}-L-rhamnoside$, quercitrin, $myricetin-3-0-{\alpha}-L-rhamnoside$, myricetin-3-0-(2'-O-galloyl)- ${\alpha}$ -L-rhamopyranoside (desmanthin), (-)-epicatechin-3-0-gallate, (-)-epigallocatechin-3-0-gallate, and methyl gallate on the basis of the speculation of spectral data and chemical reaction. Among the flavonol rhamnosides, myricetin-3-0-(2'-O-galloyl)- -L-rhamnoside(desmanthin) showed most potent inhibitory effect on tyrosinase activity and the structure of B-ring in flavonol moiety was related to the activity. (-)-Epigallocatechin-3-O-gallate having pyrogallol group in flavan-3-ol moiety exhibited more potent inhibitory effect than (-)-epicatechin-3-0-gallate having catechol group in flavan-3-ol moiety on mushroom tyrosinase activity.

  • PDF

Determination of Optimum Hydrolysis Conditions for Flavonoid Analysis in Plant Leaves (식물체 플라보노이드 성분 분석을 위한 적정 가수분해 조건)

  • Park, Jin-Soon;Hwang, In-Wook;Zheng, Hu-Zhe;Kim, Suk-Kyung;Chung, Shin-Kyo
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.261-266
    • /
    • 2010
  • Acidic hydrolysis conditions prior to HPLC analysis of plant flavonoids was investigated by response surface methodology (RSM), using leaves of Ginkgo biloba L. Ten hydrolysis conditions using 0.5-2.5 M HCl and 0.5-2.5 hr hydrolysis time were chosen to form a central composite rotatable design (CCRD), and optimization by RSM was achieved by measuring myricetin, quercetin, and kaempferol levels by HPLC. Optimum hydrolysis condition was 1.5 M HCl for 1.5 hr. The levels of flavonoids obtained under the condition were in good agreement with predicted maximum values, with yields of more than 95%. These optimum hydrolysis condition was applied to analysis of flavonoid content in the leaves of Camellia sinensis, Ficus carica, and Sageretia theezans.

Solubility Enhancement of Flavonols in the Inclusion Complex with Thioether-bridged Dimeric β-Cyclodextrins

  • Cho, Eunae;Jeong, Daham;Paik, Hyun-Dong;Jung, Seunho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2487-2493
    • /
    • 2014
  • Dimeric ${\beta}$-cyclodextrin linked by a thioether bridge was synthesized from a reaction of mono-6-iodo-6-deoxy-${\beta}$-cyclodextrin with sodium sulfide, and the structure was analyzed using nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The effects of thioether-bridged dimeric ${\beta}$-CD on the aqueous solubility of flavonols (myricetin, quercetin, and kaempferol) were investigated by ultraviolet-visible spectroscopy. The aqueous solubility of myricetin, quercetin, and kaempferol were enhanced 33.6-, 12.4-, and 10.5-fold following the addition of 9 mM of thioether-bridged dimeric ${\beta}$-CD. In comparison, the aqueous solubility of myricetin, quercetin, and kaempferol were enhanced 5.4-, 3.3-, and 2.7-fold using the same concentration of monomeric ${\beta}$-cyclodextrin. Furthermore, the formation of flavonol/thioether-bridged dimeric ${\beta}$-CD inclusion complexes was confirmed with nuclear magnetic resonance, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The results showed that the nature of the complexes significantly differed from that of free flavonols. Herein, we suggest that the thioether-bridged dimeric ${\beta}$-CD can act as an effective complexing agent for flavonols.

Antioxidative Activity of Flavonoids Isolated from Jindalrae Flowers (Rhododendron mucronulatum Turcz.) (진달래꽃으로부터 분리된 플라보노이드 화합물의 항산화성에 관한 연구)

  • Kim, Mi-Ae;Jones, A. Daniel;Chung, Tae-Yung
    • Applied Biological Chemistry
    • /
    • v.39 no.4
    • /
    • pp.320-326
    • /
    • 1996
  • Seven antioxidative flavonoids were isolated from Jindalrae flowers (Rhododendron mnonulatum Turcz.), an edible plant in Korea. These compounds were identified as afzelin, ampelopsin, catechin, myricetin, myricitrin, quercetin and quercitrin on the basis of IR, UV, FAB-MS, $^1H\;NMR,\;and\;^{13}C\;NMR$ data. These compounds were consisted of two flavonols, three flavonol glycosides, a flavane, and a dihydroflavonol. The flavonol glycosides (14.4 g) present in th ethyl ether and ethyl acetate fractions comprised up to 82% of their total flavonoid amount (17.6 g) finally recovered by means of polyamide C-200 column chromatography, preparative TLC, recrystallization, and Sephadex LH-20 column chromatography. The antioxidant activities were measured in an ethanol solution of linoleic acid in the presence of ferric thiocyanate. The antioxidant efficiency increased in the order of afzrlin<$\alpha-tocopherol$

  • PDF

Chemical Constituents of Domestic Quercus spp. Leaves (국내산 참나무속 수종 잎의 추출성분)

  • Kim, Jin-Kyu;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.61-71
    • /
    • 2006
  • This study was carried out to investigate chemotaxonomical correlation an d the chemical constituents of domestic Quercus sp. leaves. The leaves of Q. mongolica, Q. aliena, Q. serrata, Q. acutissima, Q. dentata and Q. variabilis were collected in the experimental forest of Kangwon National University. The combined extracts were successively fractionated with n -hexane, methylene chloride and ethyl acetate using a separation funnel. A portion of the ethyl acetate and $H_2O$ soluble materials of each species were chromatographed on a Sephadex LH-20 column using various aqueous MeOH and EtOH-hexane as washing solvents. Spectrometric analysis such as NMR and MS, including TLC, were performed to characterize the structures of the isolated compounds. Gallic acid, (+)-catechin, (-)-epicatechin, (+)-gallocatechin, kaempferol, astragalin, astragalin-6"-O-gallate, isoquercitrin, isoquercitrin-6"-O-gallate and myricetin were isolated from Q. mongolic a leaves. Gallic acid, kaempferol and quercetin were characterized from Q. acutissima leaves. Gallic acid, (+)-catechin, (-)-epicatechin, (+)-gallocatechin, (-)-epigallocatechin, kaempferol, quercetin, guajaverin and tamarixin were identified from Q. dentata leaves. Gallic acid, (+)-catechin, (-)-epicatechin, kaempferol, quercitrin, isoquercitrin and myricetin were purified from Q. serrata leaves. Gallic acid, (+)-catechin, astragalin, astragalin-6"-O-gallate and isoquercitrin were isolated from Q. variabilis leaves. Gallic acid was isolated from all the leaves and could be a taxonomic index on Quercus spp..

Extractives from the Bark of Platycarya strobilacea (굴피나무(Platycarya strobilancea) 수피의 Flavonol glycosides)

  • Lee, Hak-Ju;Lee, Sang-Keug;Choi, Yun-Jeong;Jo, Hyun-Jin;Kang, Ha-Young;Choi, Don-Ha
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.4
    • /
    • pp.408-413
    • /
    • 2007
  • The dried bark of Platycarya strobilacea were ground, extracted with 95% EtOH, concentrated, and one of EtOH extracts was fractionated with a series of n-hexane, dichloromethane and another was fractionated with a series of petroleumether, $Et_2O$, ethyl acetate on a separatory funnel. A portion of dichloromethane soluble was chromatographed on a Sephadex LH-20 column ($72.0{\times}5.0cm$) using EtOH-$CHCl_3$ (7:3, v/v) as eluent and A portion of $Et_2O$ soluble was chromatographed on a silica gel column ($42.0{\times}3.5cm$) using $CHCl_3$-MeOH (9:3, v/v) as eluent. The isolated compounds were identified by TLC, $^1H$-, $^{13}C$-NMR, HMBC and EI-MS. Two flavonoids and three flavonoid glycosides were isolated from the bark of P strobilacea. The structures were determined to quercetin (compound 1), myricetin (compound 2) as flavonol compounds and afzelin (compound 3), quercitrin (compound 4), myricitrin (compound 5) as flavonol glycosides, respectively, on the basis of spectrosopic data.