Browse > Article
http://dx.doi.org/10.5012/bkcs.2008.29.9.1717

Inhibitor Design for Human Heat Shock Protein 70 ATPase Domain by Pharmacophore-based in silico Screening  

Lee, Jee-Young (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Jung, Ki-Woong (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Kim, Yang-Mee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Publication Information
Abstract
The 70 kDa heat-shock protein (Hsp70) involved in various cellular functions, such as protein folding, translocation and degradation, regulates apoptosis in cancer cells. Recently, it has been reported that the green tea flavonoid (−)-epigallocatechin 3-gallate (EGCG) induces apoptosis in numerous cancer cell lines and could inhibit the anti-apoptotic effect of human Hsp70 ATPase domain (hATPase). In the present study, docking model between EGCG and hATPase was determined using automated docking study. Epi-gallo moiety in EGCG participated in hydrogen bonds with side chain of K71 and T204, and has metal chelating interaction with hATPase. Hydroxyl group of catechin moiety also participated in metal chelating hydrogen bond. Gallate moiety had two hydrogen bondings with side chains of E268 and K271, and hydrophobic interaction with Y15. Based on this docking model, we determined two pharmacophore maps consisted of six or seven features, including three or four hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. We searched a flavonoid database including 23 naturally occurring flavonoids and 10 polyphenolic flavonoids with two maps, and myricetin and GC were hit by map I. Three hydroxyl groups of B-ring in myricetin and gallo moiety of GC formed important hydrogen bonds with hATPase. 7-OH of A-ring in myricetin and OH group of catechin moiety in GC are hydrogen bond donors similar to gallate moiety in EGCG. From these results, it can be proposed that myricetin and GC can be potent inhibitors of hATPase. This study will be helpful to understand the mechanism of inhibition of hATPase by EGCG and give insights to develop potent inhibitors of hATPase.
Keywords
EGCG; Hsp70; Flavonoids; Anticancer drug; In silico screening
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Katiyar, S. K.; Matsui, M. S.; Elmets, C. A.; Mukhtar, H. Photochem. Photobiol. 1999, 69, 148
2 Sriram, M.; Osipiuk, J.; Freeman, B.; Morimoto, R.; Joachimiak, A. Structure, 1997, 5, 403   DOI   ScienceOn
3 Xu, Z.; Chen, S.; Li, X.; Luo, G.; Li, L.; Le, W. Neurochem. Res. 2006, 31, 1263   DOI   ScienceOn
4 Qanungo, S.; Das, M.; Haldar, S.; Basu, A. Carcinogenesis 2005, 26, 958   DOI   ScienceOn
5 Chen, D.; Milacic, V.; Chen, M. S.; Wan, S. B.; Lam, W. H.; Huo, C.; Landis-Piwowar, K. R.; Cui, Q. C.; Wali, A.; Chan, T. H.; Dou, Q. P. Histol. Histopathol. 2008, 23, 487
6 Brierley-Hobson, S. Bioscience Horizons 2008, 1, 9   DOI
7 Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Computational Chemistry. 1998, 19, 1639   DOI   ScienceOn
8 Ermakova, S. P.; Kang, B. S.; Choi, B. Y.; Choi, H. S.; Schuster, T. F.; Ma, W. Y.; Bode, A. M.; Dong, Z. Cancer Res. 2006, 66, 9260
9 Aghdassi, A.; Phillips, P.; Dudeja, V.; Dhaulakhandi, D.; Sharif, R.; Dawra, R.; Lerch, M. M.; Saluja, A. Cancer Res. 2007, 67, 616   DOI   ScienceOn
10 Lee, J. Y.; Baek, S.; Kim, Y. Bull. Korean Chem. Soc. 2007, 28, 379   DOI   ScienceOn
11 Lee, J. Y.; Lee, S. A.; Kim, Y. Bull. Korean Chem. Soc. 2007, 28, 941   DOI   ScienceOn
12 Gurbuxani, S.; Schmitt, E.; Cande, C.; Parcellier, A.; Hammann, A.; Daugas, E.; Kouranti, I.; Spahr, C.; Pance, A.; Kroemer, G.; Garrid, C. Oncogene 2003, 22, 6669   DOI   ScienceOn
13 Schmitt, E.; Parcellier, A.; Gurbuxani, S.; Cande, C.; Hammann, A.; Morales, M. C.; Hunt, C. R.; Dix, D. J.; Kroemer, R. T.; Giordanetto, F.; Jaattela, M.; Penninger, J. M.; Pance, A.; Kroemer, G.; Garrido, C. Cancer Res. 2003, 63, 8233
14 Bar-Shai, M.; Reznick, A. Z. Antioxid. Redox. Signal. 2006, 8, 639   DOI   ScienceOn
15 Ravagnan, L.; Gurbuxani, S.; Susin, S. A.; Maisse, C.; Daugas, E.; Zamzami, N.; Mak, T.; Jaattela, M.; Penninger, J. M.; Garrido, C.; Kroemer, G. Nat. Cell. Biol. 2001, 3, 839   DOI   ScienceOn
16 Yamamoto, N.; Smith, M. W.; Maki, A.; Berezesky, I. K.; Trump, B. F. Kidney Int. 1994, 45, 1093   DOI   ScienceOn
17 Resendez, E.; Jr., Ting, J.; Kim, S.; Wodden, S. K.; Lee, A. S. J. Cell. Biol. 1986, 103, 2145   DOI   ScienceOn
18 Hatayama, T.; Asai, Y.; Wakatsuki, T.; Kitamura, T.; Imahara, H. J. Biochem. 1993, 114, 592   DOI
19 Osipiuk, J.; Walsh, M. A.; Freeman, B. C.; Morimoto, R. I.; Joachimiak, A. Acta Crystallogr. D Biol. Crystallogr. 1999, 55, 1105   DOI   ScienceOn
20 Krammer, A.; Kirchhoff, P. D.; Venkatachalam, X. J. C. M.; Waldman, M. J. Mol. Graph. Model. 2005, 23, 395   DOI   ScienceOn
21 Verkhivker, G. M.; Bouzida, D.; Gehlhaar, D. K.; Rejto, P. A.; Arthurs, S.; Colson, A. B.; Freer, S. T.; Larson, V.; Lutyi, B. A.; Marrone, T.; Rose, P. W. Journal of Computer-Aided Molecular Design 2000, 14, 731   DOI   ScienceOn
22 Tillman, J. B.; Mote, P. L.; Walford, R. L.; Spindler, S. R. Gene 1995, 158, 225   DOI   ScienceOn
23 Rzadkowska-Bodalska, H.; Olechnowicz-Stepien, W. Pol. J. Pharmacol. Pharm. 1975, 27, 345
24 Chung, J. Y.; Huang, C.; Meng, X.; Dong, Z.; Yang, C. S. Cancer Res. 1999, 59, 4610
25 Chen, L.; Zhang, H. Y. Molecules 2007, 12, 946   DOI
26 O'Brien, M. C.; Flaherty, K. M.; McKay, D. B. J. Biol. Chem. 1996, 271, 15874   DOI   ScienceOn
27 Nishikawa, H.; Wakano, K.; Kitani, S. Biochem. Biophys. Res. Commun. 2007, 362, 504   DOI   ScienceOn
28 Leone, M.; Zhai, D.; Sareth, S.; Kitada, S.; Reed, J. C.; Pellecchia, M. Cancer Res. 2003, 63, 8118
29 Khan, N.; Afaq, F.; Saleem, M.; Ahmad, N.; Mukhtar, H. Cancer Res. 2006, 66, 2500   DOI   ScienceOn