Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.8.2487

Solubility Enhancement of Flavonols in the Inclusion Complex with Thioether-bridged Dimeric β-Cyclodextrins  

Cho, Eunae (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center (BMIC) & Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University)
Jeong, Daham (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center (BMIC) & Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University)
Paik, Hyun-Dong (Department of Food Science and Biotechnology of Animal Resources, Bio/Molecular Informatics Center (BMIC), Konkuk University)
Jung, Seunho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center (BMIC) & Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University)
Publication Information
Abstract
Dimeric ${\beta}$-cyclodextrin linked by a thioether bridge was synthesized from a reaction of mono-6-iodo-6-deoxy-${\beta}$-cyclodextrin with sodium sulfide, and the structure was analyzed using nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The effects of thioether-bridged dimeric ${\beta}$-CD on the aqueous solubility of flavonols (myricetin, quercetin, and kaempferol) were investigated by ultraviolet-visible spectroscopy. The aqueous solubility of myricetin, quercetin, and kaempferol were enhanced 33.6-, 12.4-, and 10.5-fold following the addition of 9 mM of thioether-bridged dimeric ${\beta}$-CD. In comparison, the aqueous solubility of myricetin, quercetin, and kaempferol were enhanced 5.4-, 3.3-, and 2.7-fold using the same concentration of monomeric ${\beta}$-cyclodextrin. Furthermore, the formation of flavonol/thioether-bridged dimeric ${\beta}$-CD inclusion complexes was confirmed with nuclear magnetic resonance, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The results showed that the nature of the complexes significantly differed from that of free flavonols. Herein, we suggest that the thioether-bridged dimeric ${\beta}$-CD can act as an effective complexing agent for flavonols.
Keywords
Thioether-bridged dimeric ${\beta}$-cyclodextrins; Flavonols; Complexation; Solubilization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 de Jong, M. R.; Engbersen, J. F.; Huskens, J.; Reinhoudt, D. N. Chemistry 2000, 6, 4034.   DOI   ScienceOn
2 Tabushi, I.; Kuroda, Y.; Shimokawa, K. J. Am. Chem. Soc. 1979, 101, 1614.   DOI
3 Fujita, K.; Ejima, S.; Taiji, I. J. Chem. Soc. Chem. Commun. 1984, 1277.
4 Breslow, R.; Zhang, B. J. Am. Chem. Soc. 1996, 118, 8495.   DOI   ScienceOn
5 Byun, H.-S.; Zhong, N.; Bittman, R. Org. Synth. 2000, 77, 225.   DOI
6 Yuan, D.-Q.; Koga, K.; Kouno, I.; Fujioka, T.; Fukudome, M.; Fujita, K. Chem. Commun. (Camb). 2007, 828.
7 Pham, D.-T.; Clements, P.; Easton, C. J.; Papageorgiou, J.; May, B. L.; Lincoln, S. F. New J. Chem. 2008, 32, 712.   DOI   ScienceOn
8 Higuchi, T.; Connors, K. A. Adv. Anal. Chem. Instrum. 1965, 4, 117.
9 Cho, E.; Choi, J. M.; Jung, S. J. Incl. Phenom. Macrocycl. Chem. 2013, 76, 133.   DOI   ScienceOn
10 Calabro, M. L.; Tommasini, S.; Donato, P.; Raneri, D.; Stancanelli, R.; Ficarra, P.; Ficarra, R.; Costa, C.; Catania, S.; Rustichelli, C.; Gamberini, G. J. Pharm. Biomed. Anal. 2004, 35, 365.   DOI   ScienceOn
11 Freitas, M. R. De; Rolim, L. A.; Soares, M. F. D. L. R.; Rolim- Neto, P. J.; Albuquerque, M. M.; De, Soares-Sobrinho, J. L. Carbohydr. Polym. 2012, 89, 1095.   DOI   ScienceOn
12 Liu, B.; Zhu, X.; Zeng, J.; Zhao, J. Food Res. Int. 2013, 54, 691.   DOI   ScienceOn
13 Park, J. S.; Rho, H. S.; Kim, D. H.; Chang, I. S. J. Agric. Food Chem. 2006, 54, 2951.   DOI   ScienceOn
14 Middleton, E.; Kandaswami, C.; Theoharides, T. C. Pharmacol. Rev. 2000, 52, 673.
15 Yao, L. H.; Jiang, Y. M.; Shi, J.; Tomas-Barberan, F. A.; Datta, N.; Singanusong, R.; Chen, S. S. Plant Foods Hum. Nutr. 2004, 59, 113.   DOI   ScienceOn
16 Tomas-Barberan, F.; Andres-Lacueva, C. J. Agric. Food Chem. 2012, 60, 8773.   DOI   ScienceOn
17 Del Valle, E. M. M. Process Biochem. 2004, 39, 1033.   DOI   ScienceOn
18 Szejtli, J. ChemInform. 2004, 36, 1825.
19 Pinho, E.; Grootveld, M.; Soares, G.; Henriques, M. Carbohydr. Polym. 2014, 101, 121.   DOI   ScienceOn
20 Lucas-Abellan, C.; Fortea, I.; Gabaldón, J.A.; Nunez-Delicado, E. J. Agric. Food Chem. 2008, 56, 255.   DOI   ScienceOn
21 Wahlstrom, A.; Cukalevski, R.; Danielsson, J.; Jarvet, J.; Onagi, H.; Rebek, J.; Linse, S.; Graslund, A. Biochemistry 2014, 51, 4280.
22 Jullian, C.; Moyano, L.; Yañez, C.; Olea-Azar, C. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2007, 67, 230.   DOI   ScienceOn
23 Blaszkiewicz, C.; Bricout, H.; Leonard, E.; Len, C.; Landy, D.; Cezard, C.; Djedaini-Pilard, F.; Monflier, E.; Tilloy, S. Chem. Commun. (Camb). 2013, 49, 6989.   DOI   ScienceOn
24 Liu, Y.; Chen, Y. Acc. Chem. Res. 2006, 39, 681.   DOI   ScienceOn
25 Leung, D. K.; Yang, Z.; Breslow, R. Proc. Natl. Acad. Sci. USA 2000, 97, 5050.   DOI
26 Puupponen-Pimia, R.; Nohynek, L., Meier, C.; Kahkonen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K. M. J. Appl. Microbiol. 2001, 90, 494.   DOI   ScienceOn
27 Ong, K. C.; Khoo, H. E. Gen. Pharmacol. 1997, 29, 121.   DOI   ScienceOn
28 Formica, J. V. Food Chem. Toxicol. 1995, 33, 1061.   DOI   ScienceOn
29 Mercader-Ros, M. T.; Lucas-Abellan, C.; Gabaldon, J. A.; Fortea, M. I.; Martinez-Cacha, A.; Nunez-Delicado, E. J. Agric. Food Chem. 2010, 58, 4675.   DOI   ScienceOn
30 Schneider, H.-J.; Hacket, F.; Rüdiger, V.; Ikeda, H. Chem. Rev. 1998, 98, 1755.   DOI   ScienceOn