• 제목/요약/키워드: Murine macrophages

검색결과 342건 처리시간 0.026초

Proteomic analysis of murine peritoneal macrophages after in vitro exposure to static magnetic field

  • Soon, Eun-Jae;Woong, Ko-Dae;Geun, Kwak-Young
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.113-113
    • /
    • 2003
  • A number of studies have demonstrated recently nonthermal interactions of extremely low frequency electromagnetic fields with cellular systems, such as the cells of the immune system. Particular concern came from epidemiological findings, which correlated environmental exposure of human body to weak electromagnetic fields with an elevated risk for developing certain type of leukemias and cancers. Several home/environmental sources generating extremely low frequency electromagnetic fields, such as 50 - 60 Hz high-voltage transmission lines, video display terminals, electric blankets, clinical nuclear magnetic resonance imaging procedures, etc., may interact with the human body. In this study we examined the effects of static magnetic fields (SMF) on the phagocytosis of the murine peritoneal macrophages (C57BL/6). The cells were exposed in vitro for 24 h at 37$^{\circ}C$ to 400 G SMF. The phagocytic activity of peritoneal macrophages was determined with a luminometer. Exposure to the SMF decreased phagocytic activity of murine peritoneal macrophages. In order to provide a more exact mechanism of the phenomenon, we analyzed peritoneal macrophages for alteration in their proteomes. The expression levels of these 5 proteins were increased in the SMF. In total 5 proteins which were differentially expressed in the SMF compared with control group were identified. The expression levels of these 5 proteins were increased in the SMF.

  • PDF

자근에 함유된 복강 마크로파지의 탐식능 활성분획 (An Active Fraction on Phagocytosis of Murine Peritoneal Macrophage in Lithospermi Radix)

  • 전훈;소준노;은재순
    • 생약학회지
    • /
    • 제29권4호
    • /
    • pp.391-395
    • /
    • 1998
  • The phagocytic activity of murine peritoneal macrophages was determined by lucigenin chemiluminescence with luminometer and engulfment of fluorescein-conjugated E. coli particles. 70% MeOH extract of Lithospermi Radix was fractionated successively with hexane, methylene chloride, n-BuOH and water. The water fraction (m.w. 500 to 1,000) enhanced the lucigenin chemiluminescence and the engulfment of fluorescein-conjugated E. coli particles in murine peritoneal macrophages. The water fraction suppressed the production of nitric oxide in the macrophages. These results suggest that an active fraction of phagocytosis in Lithos-permi Radix is the water fraction and the molecular weight is 500 to 1,000.

  • PDF

Effects of Static Magnetic Fields on Phagocytic Activity of Murine Peritoneal Macrophages

  • Eun, Jae-Soon;Ko, Dae-Woong;Jeon, Yong-Keun;Lee, Kyung-A;Park, Hoon;Ma, Tian-Ze;Kim, Min-Gul;Kwak, Yong-Geun
    • Biomolecules & Therapeutics
    • /
    • 제14권3호
    • /
    • pp.152-159
    • /
    • 2006
  • Electro-magnetic fields and static magnetic fields generated from diverse home/environmental sources have been reported that these could make harmful effects on the human health such as suppression of immunity and tumorigenesis. However, the mechanisms for the biologic effects of electro-magnetic fields or static magnetic fields are still remained unclear. In this study, we examined the in vitro effects of static magnetic fields (SMF) on murine peritoneal macrophages. The cells were exposed in vitro to SMF of $150{\sim}250$ or $350{\sim}450$ G in 5% $CO_2$-incubator. The phagocytic activity of murine peritoneal macrophages was inhibited under exposure to SMF. In order to provide a more complete picture of molecular mechanism for the biological effect of SMF, we compared the levels of total proteins from macrophages with or without exposure to SMF using quantitative proteomic analysis. Proteins which were differentially expressed in macrophages exposed to SMF compared with non-exposed macrophages, were identified. Among them, the levels of trypsinogen 16, lactose-binding lectin Mac-2, galactoside-binding lectin, actin-like (Put. ${\beta}-actin$, vimentin) and electron transferring flavoprotein beta polypeptide were enhanced under exposure to SMF. These results suggest that SMF can affect the phagocytic activity of macrophages via diverse mechanisms.

Immunomodulating Activity of a Fucoidan Isolated from Korean Undaria pinnatifida Sporophyll

  • Yoo, Yung-Choon;Kim, Woo-Jung;Kim, So-Yeon;Kim, Sung-Min;Chung, Mi-Kyung;Park, Joo-Woong;Suh, Hyun-Hyo;Lee, Kyung-Bok;Park, Yong-Il
    • ALGAE
    • /
    • 제22권4호
    • /
    • pp.333-338
    • /
    • 2007
  • A fucoidan, isolated from Korean Undaria pinnatifida spoprophyll (UP-F), was investigated for its immunomodulating activity on murine macrophages and splenocytes, and its activity was compared with that of fucoidan from Fucus vesiculosus (FV-F). Treatment of UP-F resulted in inhibition of the growth of murine macrophage RAW 264.7 cells, but its cytotoxicity was not observed in normal murine splenocytes. FV-F was shown to be highly cytotoxic to both immune cells, and its cytotoxic activity was higher than that of UP-F. Treatment of UP-F induced TNF-α in a dose-dependent manner from two types of macrophages, RAW 264.7 cells and murine peritoneal macrophages. The TNF-α-inducing activity of UP-F was higher than that of FV-F. UP-F also actively induced chemokines (RANTES and MIP-1α) from RAW 264.7 cells. Furthermore, treatment of UP-F gave rise to activation of murine splenocytes to produce cytokine (IL-6) and chemokines (RANTES and MIP-1α), showing significantly higher activity than that of FV-F. These results indicate that UP-F is less cytotoxic to immune cells than FV-F, and possesses immunomodulating activity to produce cytokines and chemokines from macrophages and splenocytes.

Intravenous Mesenchymal Stem Cell Administration Modulates Monocytes/Macrophages and Ameliorates Asthmatic Airway Inflammation in a Murine Asthma Model

  • Mo, Yosep;Kang, Sung-Yoon;Bang, Ji-Young;Kim, Yujin;Jeong, Jiung;Jeong, Eui-Man;Kim, Hye Young;Cho, Sang-Heon;Kang, Hye-Ryun
    • Molecules and Cells
    • /
    • 제45권11호
    • /
    • pp.833-845
    • /
    • 2022
  • Although asthma is a common chronic airway disease that responds well to anti-inflammatory agents, some patients with asthma are unresponsive to conventional treatment. Mesenchymal stem cells (MSCs) have therapeutic potential for the treatment of inflammatory diseases owing to their immunomodulatory properties. However, the target cells of MSCs are not yet clearly known. This study aimed to determine the effect of human umbilical cord-derived MSCs (hUC-MSCs) on asthmatic lungs by modulating innate immune cells and effector T cells using a murine asthmatic model. Intravenously administered hUC-MSCs reduced airway resistance, mucus production, and inflammation in the murine asthma model. hUC-MSCs attenuated not only T helper (Th) 2 cells and Th17 cells but also augmented regulatory T cells (Tregs). As for innate lymphoid cells (ILC), hUC-MSCs effectively suppressed ILC2s by downregulating master regulators of ILC2s, such as Gata3 and Tcf7. Finally, regarding lung macrophages, hUC-MSCs reduced the total number of macrophages, particularly the proportion of the enhanced monocyte-derived macrophage population. In a closer examination of monocyte-derived macrophages, hUC-MSCs reduced the M2a and M2c populations. In conclusion, hUC-MSCs can be considered as a potential anti-asthmatic treatment given their therapeutic effect on the asthmatic airway inflammation in a murine asthma model by modulating innate immune cells, such as ILC2s, M2a, and M2c macrophages, as well as affecting Tregs and effector T cells.

Anti Inflammatory Effect of Low Level Laser Irradiation on the LPS-stimulated Murine Immunocytes

  • Jin, Dan;Lee, Jong-Young;Cho, Hyun-Chul;Kim, Soo-Ki
    • Molecular & Cellular Toxicology
    • /
    • 제1권2호
    • /
    • pp.124-129
    • /
    • 2005
  • Pro-inflammatory cytokines, such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin-12 (IL-12) and interleukin $(IL-1)-{\beta}$, play a key role in causing inflammatory diseases, which are rheumatoid arthritis, Crohn's disease and sepsis. Accumulating evidences suggest that low level laser irradiation (LLLI) may have an anti-inflammatory action. However, there are few data regarding down regulation of Th1 immune response by using the diod typed laser emitting device for human patients. As a fundamental step in order to address this issue, we investigated immunological impact of the low level laser irradiation (10 mw laser diode with a wavelength of 630 nm) on expression of pro-inflammatory cytokines in murine immunocytes (splenocytes and peritoneal macrophages) in vitro. The LLLI on lipopolysaccharide (LPS 100 ng/ml)-stimulated murine splenocytes and macrophages, clearly down regulated mRNA expression of $TNF-{\alpha}$ and IL-12 in dose-dependent manner. In addition, LLLI significantly inhibits the NO production in the LPS-stimulated murine macrophages. This data suggests that LLLI (wavelength of 630 nm) may exert an anti-inflammatory action via modulation of pro-inflammatory cytokine and NO production pathway.

여정자(如貞子)가 대식세포(大食細胞) 탐식능(貪食能)에 미치는 영향(影響) (Effects of Ligustrum Lucidum on the Phagocytic Activity of Macrophages)

  • 이광석;송봉근;김형균;이언정
    • 대한한의학회지
    • /
    • 제17권2호
    • /
    • pp.227-236
    • /
    • 1996
  • The effect of Ligustrum Lucidum(LL) on the production of nitric oxide (NO) and superoxide by murine peritoneal macrophages were investigated. Stimulation of the cells with LL in the presence or absence of interferon-r(IFN-r) resulted in the increased accumulation of nitrite in the medium. To further examine the mechanism of LL induced. NO Synthesis, we evaluated the secretion of tumor necrosis $factor-{\alpha}(TNF-{\alpha})$ by LL in murine macrophages. Treatment of LL increased the secretion of bioactive $TNF-{\alpha}$ in cultured medium. In addition, LL induced NO production was decreased by the treatment of anti-murine $TNF-{\alpha}$. neutralizing antibodies, indicating that LL induced superoxide production was decreased by the treatment of anti-murine $TNF-{\alpha}$ neutralizing antibodies. These data suggested that LL induced superoxide production was related to $TNF-{\alpha}$ secretion. In conclusion, our results indicates that LL may enhance innate immune response and be applied as a immunoregulating drug improving phagocytosis.

  • PDF

LPS로 활성화된 복강 대식세포에서 신이 추출물의 염증성 사이토카인 및 NO 억제 효과 (Water Extract of Flowers of Magnolia Denudata Inhibits LPS-induced Nitric Oxide and Pro-inflammatory Cytokines Production in Murine Peritoneal Macrophage by Inhibiting $NF-{\kappa}B$ Activation)

  • 김도윤;정원석;문형철;박성주
    • 동의생리병리학회지
    • /
    • 제21권4호
    • /
    • pp.916-920
    • /
    • 2007
  • Flowers of Magnolia denudata has been reported to possess a variety of pharmacological activities. In this study, we investigated the anti-inflammatory effects and mechanism of the water extract of Flowers of Magnolia denudata(MD) in lipopolysacchride (LPS)-mediated inflammatory mediators in murine peritoneal macrophages. MD itself does not have any toxic effects in murine peritoneal macrophages. MD inhibits LPS-induced nitric oxide (NO), tumor necrosis factor $(TNF)-{\alpha}$, IL-6 and IL-12 production in murine peritoneal macrophages. Furthermore, we have found that MD inhibited LPS-induced $NF-{\kappa}B$ but not c-Jun N-terminal kinase (JNK), p38 and extracellular signal-ragulated kinase (ERK) activation. These results suggested that MD inhibit LPS-induced production of $TNF-{\alpha}$, IL-6 and IL-12 via suppression of the $NF-{\kappa}B$ activation.

Production of nitric oxide by murine macrophages induced by lipophosphoglycan of Leishmania major

  • KAVOOSI Gholamreza;ARDESTANI Sussan K.;KARIMINIA Amina;TAVAKOLI Zahra
    • Parasites, Hosts and Diseases
    • /
    • 제44권1호
    • /
    • pp.35-41
    • /
    • 2006
  • Protozoan parasites of the genus Leishmania cause a number of important human diseases. One of the key determinants of parasite infectivity and survival is the surface glycoconjugate lipophosphoglycan (LPG). In addition, LPG is shown to be useful as a transmission blocking vaccine. Since culture supernatant of parasite promastigotes is a good source of LPG, we made attempts to characterize functions of the culture supernatant, and membrane LPG isolated from metacyclic promastigotes of Leishmania major. The purification scheme included anion-exchange chromatography, hydrophobic interaction chromatography and cold methanol precipitation. The purity of supernatant LPG (sLPG) and membrane LPG (mLPG) was determined by SOS-PAGE and thin layer chromatography. The effect of mLPG and sLPG on nitric oxide (NO) production by murine macrophages cell line (J77 4.1 A) was studied. Both sLPG and mLPG induced NO production in a dose dependent manner but sLPG induced significantly higher amount of NO than mLPG. Our results show that sLPG is able to promote NO production by murine macrophages.

Regulation of Cytokine Production by Exogenous Nitric oxide in Murine Splenocyte and Peritoneal Macrophage

  • Eun, Jae-Soon;Suh, Yong-Hoon;Kim, Dae-Keun;Jeon, Hoon
    • Archives of Pharmacal Research
    • /
    • 제23권5호
    • /
    • pp.531-534
    • /
    • 2000
  • Nitric oxide (NO), products of activated macrophages, have a great impact on the regulation of cytokine production. The role of NO in non-specific host cells is commonly accepted. On the contrary, its role as an immuno-regulatory molecule is still controversial. In this study, we have investigated the effect of NO on the production of cytokines from murine splenocytes and macrophages. S-nitroso-L-glutathione inhibited the release of both interferone-$\gamma$ and interleukin-2 produced by Th1 cells and tumor necrosis factor-$\alpha$ and interleukin-1$\beta$ produced by macrophages, but did not affect the release of interleukin-4 and interleukin-10 produced by Th2 cells. These results suggest that NO exerts a down-regulatory effect on the secretion of cytokines from Th1 cells and macrophages which are implicated in immune response. Thus, NO may have an important role as an immune-modulatory as well as effector molecule in the immune system.

  • PDF