DOI QR코드

DOI QR Code

Intravenous Mesenchymal Stem Cell Administration Modulates Monocytes/Macrophages and Ameliorates Asthmatic Airway Inflammation in a Murine Asthma Model

  • Mo, Yosep (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center) ;
  • Kang, Sung-Yoon (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center) ;
  • Bang, Ji-Young (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center) ;
  • Kim, Yujin (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center) ;
  • Jeong, Jiung (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Jeong, Eui-Man (Department of Pharmacy, Jeju National University College of Pharmacy) ;
  • Kim, Hye Young (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center) ;
  • Cho, Sang-Heon (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center) ;
  • Kang, Hye-Ryun (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center)
  • Received : 2022.03.08
  • Accepted : 2022.07.07
  • Published : 2022.11.30

Abstract

Although asthma is a common chronic airway disease that responds well to anti-inflammatory agents, some patients with asthma are unresponsive to conventional treatment. Mesenchymal stem cells (MSCs) have therapeutic potential for the treatment of inflammatory diseases owing to their immunomodulatory properties. However, the target cells of MSCs are not yet clearly known. This study aimed to determine the effect of human umbilical cord-derived MSCs (hUC-MSCs) on asthmatic lungs by modulating innate immune cells and effector T cells using a murine asthmatic model. Intravenously administered hUC-MSCs reduced airway resistance, mucus production, and inflammation in the murine asthma model. hUC-MSCs attenuated not only T helper (Th) 2 cells and Th17 cells but also augmented regulatory T cells (Tregs). As for innate lymphoid cells (ILC), hUC-MSCs effectively suppressed ILC2s by downregulating master regulators of ILC2s, such as Gata3 and Tcf7. Finally, regarding lung macrophages, hUC-MSCs reduced the total number of macrophages, particularly the proportion of the enhanced monocyte-derived macrophage population. In a closer examination of monocyte-derived macrophages, hUC-MSCs reduced the M2a and M2c populations. In conclusion, hUC-MSCs can be considered as a potential anti-asthmatic treatment given their therapeutic effect on the asthmatic airway inflammation in a murine asthma model by modulating innate immune cells, such as ILC2s, M2a, and M2c macrophages, as well as affecting Tregs and effector T cells.

Keywords

Acknowledgement

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (No. NRF-2017M3A9B4061887 and 2020R1A2C2007920). Parts of figures were created with BioRender.com.

References

  1. Abumaree, M.H., Al Jumah, M.A., Kalionis, B., Jawdat, D., Al Khaldi, A., Abomaray, F.M., Fatani, A.S., Chamley, L.W., and Knawy, B.A. (2013). Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev. Rep. 9, 620-641. https://doi.org/10.1007/s12015-013-9455-2
  2. Bernardo, M.E. and Fibbe, W.E. (2013). Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13, 392-402. https://doi.org/10.1016/j.stem.2013.09.006
  3. Bosco, M.C. (2019). Macrophage polarization: reaching across the aisle? J. Allergy Clin. Immunol. 143, 1348-1350. https://doi.org/10.1016/j.jaci.2018.12.995
  4. Bosnjak, B., Stelzmueller, B., Erb, K.J., and Epstein, M.M. (2011). Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir. Res. 12, 114. https://doi.org/10.1186/1465-9921-12-114
  5. Byers, D.E. and Holtzman, M.J. (2011). Alternatively activated macrophages and airway disease. Chest 140, 768-774. https://doi.org/10.1378/chest.10-2132
  6. Carr, W.W. and Szefler, S.J. (2016). Inhaled corticosteroids: ocular safety and the hypothalamic-pituitary-adrenal axis. Ann. Allergy Asthma Immunol. 117, 589-594. https://doi.org/10.1016/j.anai.2016.06.017
  7. Chakarov, S., Lim, H.Y., Tan, L., Lim, S.Y., See, P., Lum, J., Zhang, X.M., Foo, S., Nakamizo, S., Duan, K., et al. (2019). Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964. https://doi.org/10.1126/science.aau0964
  8. Chen, K., Wang, D., Du, W.T., Han, Z.B., Ren, H., Chi, Y., Yang, S.G., Zhu, D., Bayard, F., and Han, Z.C. (2010). Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin. Immunol. 135, 448-458. https://doi.org/10.1016/j.clim.2010.01.015
  9. Cho, K.S., Park, M.K., Kang, S.A., Park, H.Y., Hong, S.L., Park, H.K., Yu, H.S., and Roh, H.J. (2014). Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma. Mediators Inflamm. 2014, 436476.
  10. Doherty, T.A. and Broide, D.H. (2019). Airway innate lymphoid cells in the induction and regulation of allergy. Allergol. Int. 68, 9-16. https://doi.org/10.1016/j.alit.2018.11.001
  11. Duan, M., Steinfort, D.P., Smallwood, D., Hew, M., Chen, W., Ernst, M., Irving, L.B., Anderson, G.P., and Hibbs, M.L. (2016). CD11b immunophenotyping identifies inflammatory profiles in the mouse and human lungs. Mucosal Immunol. 9, 550-563. https://doi.org/10.1038/mi.2015.84
  12. English, K., Barry, F.P., and Mahon, B.P. (2008). Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol. Lett. 115, 50-58. https://doi.org/10.1016/j.imlet.2007.10.002
  13. Fan, X.L., Zhang, Y., Li, X., and Fu, Q.L. (2020). Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell. Mol. Life Sci. 77, 2771-2794. https://doi.org/10.1007/s00018-020-03454-6
  14. Fang, S.B., Zhang, H.Y., Meng, X.C., Wang, C., He, B.X., Peng, Y.Q., Xu, Z.B., Fan, X.L., Wu, Z.J., Wu, Z.C., et al. (2020a). Small extracellular vesicles derived from human MSCs prevent allergic airway inflammation via immunomodulation on pulmonary macrophages. Cell Death Dis. 11, 409. https://doi.org/10.1038/s41419-020-2606-x
  15. Fang, S.B., Zhang, H.Y., Wang, C., He, B.X., Liu, X.Q., Meng, X.C., Peng, Y.Q., Xu, Z.B., Fan, X.L., Wu, Z.J., et al. (2020b). Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of miR-146a-5p. J. Extracell. Vesicles 9, 1723260. https://doi.org/10.1080/20013078.2020.1723260
  16. Fricker, M. and Gibson, P.G. (2017). Macrophage dysfunction in the pathogenesis and treatment of asthma. Eur. Respir. J. 50, 1700196. https://doi.org/10.1183/13993003.00196-2017
  17. Gautier, E.L., Shay, T., Miller, J., Greter, M., Jakubzick, C., Ivanov, S., Helft, J., Chow, A., Elpek, K.G., Gordonov, S., et al. (2012). Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118-1128. https://doi.org/10.1038/ni.2419
  18. Gibbings, S.L., Thomas, S.M., Atif, S.M., McCubbrey, A.L., Desch, A.N., Danhorn, T., Leach, S.M., Bratton, D.L., Henson, P.M., Janssen, W.J., et al. (2017). Three unique interstitial macrophages in the murine lung at steady state. Am. J. Respir. Cell Mol. Biol. 57, 66-76. https://doi.org/10.1165/rcmb.2016-0361OC
  19. Girodet, P.O., Nguyen, D., Mancini, J.D., Hundal, M., Zhou, X., Israel, E., and Cernadas, M. (2016). Alternative macrophage activation is increased in asthma. Am. J. Respir. Cell Mol. Biol. 55, 467-475. https://doi.org/10.1165/rcmb.2015-0295OC
  20. Goodwin, M., Sueblinvong, V., Eisenhauer, P., Ziats, N.P., LeClair, L., Poynter, M.E., Steele, C., Rincon, M., and Weiss, D.J. (2011). Bone marrowderived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice. Stem Cells 29, 1137-1148. https://doi.org/10.1002/stem.656
  21. Helal, M.A.M., Shaheen, N.E.M., and Abu Zahra, F.A. (2016). Immunomodulatory capacity of the local mesenchymal stem cells transplantation after severe skeletal muscle injury in female rats. Immunopharmacol. Immunotoxicol. 38, 414-422. https://doi.org/10.1080/08923973.2016.1222617
  22. Hu, X., Tian, Y., Qu, S., Cao, Y., Li, S., Zhang, W., Zhang, Z., Zhang, N., and Fu, Y. (2017). Protective effect of TM6 on LPS-induced acute lung injury in mice. Sci. Rep. 7, 572. https://doi.org/10.1038/s41598-017-00551-8
  23. Huang, B., Cheng, X., Wang, H., Huang, W., la Ga Hu, Z., Wang, D., Zhang, K., Zhang, H., Xue, Z., Da, Y., et al. (2016). Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J. Transl. Med. 14, 45. https://doi.org/10.1186/s12967-016-0792-1
  24. Huang, Q., Seillet, C., and Belz, G.T. (2017). Shaping innate lymphoid cell diversity. Front. Immunol. 8, 1569. https://doi.org/10.3389/fimmu.2017.01569
  25. Huang, Y.C., Parolini, O., La Rocca, G., and Deng, L. (2012). Umbilical cord versus bone marrow-derived mesenchymal stromal cells. Stem Cells Dev. 21, 2900-2903. https://doi.org/10.1089/scd.2012.0216
  26. Janssen, W.J., Barthel, L., Muldrow, A., Oberley-Deegan, R.E., Kearns, M.T., Jakubzick, C., and Henson, P.M. (2011). Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am. J. Respir. Crit. Care Med. 184, 547-560. https://doi.org/10.1164/rccm.201011-1891OC
  27. Jeong, E.M., Yoon, J.H., Lim, J., Shin, J.W., Cho, A.Y., Heo, J., Lee, K.B., Lee, J.H., Lee, W.J., Kim, H.J., et al. (2018). Real-time monitoring of glutathione in living cells reveals that high glutathione levels are required to maintain stem cell function. Stem Cell Reports 10, 600-614. https://doi.org/10.1016/j.stemcr.2017.12.007
  28. Jiang, Z. and Zhu, L. (2016). Update on the role of alternatively activated macrophages in asthma. J. Asthma Allergy 9, 101-107. https://doi.org/10.2147/JAA.S104508
  29. Kang, H., Bang, J.Y., Mo, Y., Shin, J.W., Bae, B., Cho, S.H., Kim, H.Y., and Kang, H.R. (2022). Effect of Acinetobacter lwoffii on the modulation of macrophage activation and asthmatic inflammation. Clin. Exp. Allergy 52, 518-529. https://doi.org/10.1111/cea.14077
  30. Kim, H.Y., Umetsu, D.T., and Dekruyff, R.H. (2016). Innate lymphoid cells in asthma: will they take your breath away? Eur. J. Immunol. 46, 795-806. https://doi.org/10.1002/eji.201444557
  31. Kim, J., Chang, Y., Bae, B., Sohn, K.H., Cho, S.H., Chung, D.H., Kang, H.R., and Kim, H.Y. (2019). Innate immune crosstalk in asthmatic airways: Innate lymphoid cells coordinate polarization of lung macrophages. J. Allergy Clin. Immunol. 143, 1769-1782.e11. https://doi.org/10.1016/j.jaci.2018.10.040
  32. Kim, R.L., Bang, J.Y., Kim, J., Mo, Y., Kim, Y., Lee, C.G., Elias, J.A., Kim, H.Y., and Kang, H.R. (2022). Mesenchymal stem cells exert their anti-asthmatic effects through macrophage modulation in a murine chronic asthma model. Sci. Rep. 12, 9811. https://doi.org/10.1038/s41598-022-14027-x
  33. Klopfleisch, R. (2016). Macrophage reaction against biomaterials in the mouse model - phenotypes, functions and markers. Acta Biomater. 43, 3-13. https://doi.org/10.1016/j.actbio.2016.07.003
  34. Lee, H.S., Kwon, H.S., Park, D.E., Woo, Y.D., Kim, H.Y., Kim, H.R., Cho, S.H., Min, K.U., Kang, H.R., and Chang, Y.S. (2015). Thalidomide inhibits alternative activation of macrophages in vivo and in vitro: a potential mechanism of anti-asthmatic effect of thalidomide. PLoS One 10, e0123094. https://doi.org/10.1371/journal.pone.0123094
  35. Liegeois, M., Legrand, C., Desmet, C.J., Marichal, T., and Bureau, F. (2018). The interstitial macrophage: a long-neglected piece in the puzzle of lung immunity. Cell. Immunol. 330, 91-96. https://doi.org/10.1016/j.cellimm.2018.02.001
  36. Lu, J., Cao, Q., Zheng, D., Sun, Y., Wang, C., Yu, X., Wang, Y., Lee, V.W., Zheng, G., Tan, T.K., et al. (2013). Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int. 84, 745-755. https://doi.org/10.1038/ki.2013.135
  37. Mann, C.J., Perdiguero, E., Kharraz, Y., Aguilar, S., Pessina, P., Serrano, A.L., and Munoz-Canoves, P. (2011). Aberrant repair and fibrosis development in skeletal muscle. Skelet. Muscle 1, 21. https://doi.org/10.1186/2044-5040-1-21
  38. Mathias, L.J., Khong, S.M., Spyroglou, L., Payne, N.L., Siatskas, C., Thorburn, A.N., Boyd, R.L., and Heng, T.S. (2013). Alveolar macrophages are critical for the inhibition of allergic asthma by mesenchymal stromal cells. J. Immunol. 191, 5914-5924. https://doi.org/10.4049/jimmunol.1300667
  39. McQuattie-Pimentel, A.C., Budinger, G.R.S., and Ballinger, M.N. (2018). Monocyte-derived alveolar macrophages: the dark side of lung repair? Am. J. Respir. Cell Mol. Biol. 58, 5-6. https://doi.org/10.1165/rcmb.2017-0328ED
  40. Mo, Y., Kang, H., Bang, J.Y., Shin, J.W., Kim, H.Y., Cho, S.H., and Kang, H.R. (2022). Intratracheal administration of mesenchymal stem cells modulates lung macrophage polarization and exerts anti-asthmatic effects. Sci. Rep. 12, 11728. https://doi.org/10.1038/s41598-022-14846-y
  41. Muraille, E., Leo, O., and Moser, M. (2014). TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front. Immunol. 5, 603.
  42. Murray, P.J. (2017). Macrophage polarization. Annu. Rev. Physiol. 79, 541-566. https://doi.org/10.1146/annurev-physiol-022516-034339
  43. Negi, N. and Griffin, M.D. (2020). Effects of mesenchymal stromal cells on regulatory T cells: current understanding and clinical relevance. Stem Cells 38, 596-605. https://doi.org/10.1002/stem.3151
  44. Shi, Y., Hu, G., Su, J., Li, W., Chen, Q., Shou, P., Xu, C., Chen, X., Huang, Y., Zhu, Z., et al. (2010). Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 20, 510-518. https://doi.org/10.1038/cr.2010.44
  45. Shin, J.W., Ryu, S., Ham, J., Jung, K., Lee, S., Chung, D.H., Kang, H.R., and Kim, H.Y. (2021). Mesenchymal stem cells suppress severe asthma by directly regulating Th2 cells and type 2 innate lymphoid cells. Mol. Cells 44, 580-590. https://doi.org/10.14348/molcells.2021.0101
  46. Sun, M., Sun, L., Huang, C., Chen, B.C., and Zhou, Z. (2019). Induction of macrophage M2b/c polarization by adipose tissue-derived mesenchymal stem cells. J. Immunol. Res. 2019, 7059680.
  47. Swieboda, D., Johnson, E.L., Beaver, J., Haddad, L., Enninga, E.A.L., Hathcock, M., Cordes, S., Jean, V., Lane, I., Skountzou, I., et al. (2020). Baby's first macrophage: temporal regulation of Hofbauer cell phenotype influences ligand-mediated innate immune responses across gestation. J. Immunol. 204, 2380-2391. https://doi.org/10.4049/jimmunol.1901185
  48. Tang, Y., Zhou, Y., and Li, H.J. (2021). Advances in mesenchymal stem cell exosomes: a review. Stem Cell Res. Ther. 12, 71. https://doi.org/10.1186/s13287-021-02138-7
  49. Wang, Y., Chen, X., Cao, W., and Shi, Y. (2014). Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat. Immunol. 15, 1009-1016 https://doi.org/10.1038/ni.3002
  50. Ural, B.B., Yeung, S.T., Damani-Yokota, P., Devlin, J.C., de Vries, M., VeraLicona, P., Samji, T., Sawai, C.M., Jang, G., Perez, O.A., et al. (2020). Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties. Sci. Immunol. 5, eaax8756. https://doi.org/10.1126/sciimmunol.aax8756