Browse > Article
http://dx.doi.org/10.14348/molcells.2022.0038

Intravenous Mesenchymal Stem Cell Administration Modulates Monocytes/Macrophages and Ameliorates Asthmatic Airway Inflammation in a Murine Asthma Model  

Mo, Yosep (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center)
Kang, Sung-Yoon (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center)
Bang, Ji-Young (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center)
Kim, Yujin (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center)
Jeong, Jiung (Department of Internal Medicine, Seoul National University College of Medicine)
Jeong, Eui-Man (Department of Pharmacy, Jeju National University College of Pharmacy)
Kim, Hye Young (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center)
Cho, Sang-Heon (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center)
Kang, Hye-Ryun (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center)
Abstract
Although asthma is a common chronic airway disease that responds well to anti-inflammatory agents, some patients with asthma are unresponsive to conventional treatment. Mesenchymal stem cells (MSCs) have therapeutic potential for the treatment of inflammatory diseases owing to their immunomodulatory properties. However, the target cells of MSCs are not yet clearly known. This study aimed to determine the effect of human umbilical cord-derived MSCs (hUC-MSCs) on asthmatic lungs by modulating innate immune cells and effector T cells using a murine asthmatic model. Intravenously administered hUC-MSCs reduced airway resistance, mucus production, and inflammation in the murine asthma model. hUC-MSCs attenuated not only T helper (Th) 2 cells and Th17 cells but also augmented regulatory T cells (Tregs). As for innate lymphoid cells (ILC), hUC-MSCs effectively suppressed ILC2s by downregulating master regulators of ILC2s, such as Gata3 and Tcf7. Finally, regarding lung macrophages, hUC-MSCs reduced the total number of macrophages, particularly the proportion of the enhanced monocyte-derived macrophage population. In a closer examination of monocyte-derived macrophages, hUC-MSCs reduced the M2a and M2c populations. In conclusion, hUC-MSCs can be considered as a potential anti-asthmatic treatment given their therapeutic effect on the asthmatic airway inflammation in a murine asthma model by modulating innate immune cells, such as ILC2s, M2a, and M2c macrophages, as well as affecting Tregs and effector T cells.
Keywords
asthma; immunity; innate; macrophage activation; mesenchymal stem cells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, H.S., Kwon, H.S., Park, D.E., Woo, Y.D., Kim, H.Y., Kim, H.R., Cho, S.H., Min, K.U., Kang, H.R., and Chang, Y.S. (2015). Thalidomide inhibits alternative activation of macrophages in vivo and in vitro: a potential mechanism of anti-asthmatic effect of thalidomide. PLoS One 10, e0123094.   DOI
2 Liegeois, M., Legrand, C., Desmet, C.J., Marichal, T., and Bureau, F. (2018). The interstitial macrophage: a long-neglected piece in the puzzle of lung immunity. Cell. Immunol. 330, 91-96.   DOI
3 Lu, J., Cao, Q., Zheng, D., Sun, Y., Wang, C., Yu, X., Wang, Y., Lee, V.W., Zheng, G., Tan, T.K., et al. (2013). Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int. 84, 745-755.   DOI
4 Mann, C.J., Perdiguero, E., Kharraz, Y., Aguilar, S., Pessina, P., Serrano, A.L., and Munoz-Canoves, P. (2011). Aberrant repair and fibrosis development in skeletal muscle. Skelet. Muscle 1, 21.   DOI
5 Mathias, L.J., Khong, S.M., Spyroglou, L., Payne, N.L., Siatskas, C., Thorburn, A.N., Boyd, R.L., and Heng, T.S. (2013). Alveolar macrophages are critical for the inhibition of allergic asthma by mesenchymal stromal cells. J. Immunol. 191, 5914-5924.   DOI
6 McQuattie-Pimentel, A.C., Budinger, G.R.S., and Ballinger, M.N. (2018). Monocyte-derived alveolar macrophages: the dark side of lung repair? Am. J. Respir. Cell Mol. Biol. 58, 5-6.   DOI
7 Ural, B.B., Yeung, S.T., Damani-Yokota, P., Devlin, J.C., de Vries, M., VeraLicona, P., Samji, T., Sawai, C.M., Jang, G., Perez, O.A., et al. (2020). Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties. Sci. Immunol. 5, eaax8756.   DOI
8 Gautier, E.L., Shay, T., Miller, J., Greter, M., Jakubzick, C., Ivanov, S., Helft, J., Chow, A., Elpek, K.G., Gordonov, S., et al. (2012). Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118-1128.   DOI
9 Tang, Y., Zhou, Y., and Li, H.J. (2021). Advances in mesenchymal stem cell exosomes: a review. Stem Cell Res. Ther. 12, 71.   DOI
10 Swieboda, D., Johnson, E.L., Beaver, J., Haddad, L., Enninga, E.A.L., Hathcock, M., Cordes, S., Jean, V., Lane, I., Skountzou, I., et al. (2020). Baby's first macrophage: temporal regulation of Hofbauer cell phenotype influences ligand-mediated innate immune responses across gestation. J. Immunol. 204, 2380-2391.   DOI
11 Wang, Y., Chen, X., Cao, W., and Shi, Y. (2014). Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat. Immunol. 15, 1009-1016   DOI
12 Mo, Y., Kang, H., Bang, J.Y., Shin, J.W., Kim, H.Y., Cho, S.H., and Kang, H.R. (2022). Intratracheal administration of mesenchymal stem cells modulates lung macrophage polarization and exerts anti-asthmatic effects. Sci. Rep. 12, 11728.   DOI
13 Abumaree, M.H., Al Jumah, M.A., Kalionis, B., Jawdat, D., Al Khaldi, A., Abomaray, F.M., Fatani, A.S., Chamley, L.W., and Knawy, B.A. (2013). Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev. Rep. 9, 620-641.   DOI
14 Bernardo, M.E. and Fibbe, W.E. (2013). Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13, 392-402.   DOI
15 Bosco, M.C. (2019). Macrophage polarization: reaching across the aisle? J. Allergy Clin. Immunol. 143, 1348-1350.   DOI
16 Goodwin, M., Sueblinvong, V., Eisenhauer, P., Ziats, N.P., LeClair, L., Poynter, M.E., Steele, C., Rincon, M., and Weiss, D.J. (2011). Bone marrowderived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice. Stem Cells 29, 1137-1148.   DOI
17 Huang, B., Cheng, X., Wang, H., Huang, W., la Ga Hu, Z., Wang, D., Zhang, K., Zhang, H., Xue, Z., Da, Y., et al. (2016). Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J. Transl. Med. 14, 45.   DOI
18 Muraille, E., Leo, O., and Moser, M. (2014). TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front. Immunol. 5, 603.
19 Murray, P.J. (2017). Macrophage polarization. Annu. Rev. Physiol. 79, 541-566.   DOI
20 Negi, N. and Griffin, M.D. (2020). Effects of mesenchymal stromal cells on regulatory T cells: current understanding and clinical relevance. Stem Cells 38, 596-605.   DOI
21 Shi, Y., Hu, G., Su, J., Li, W., Chen, Q., Shou, P., Xu, C., Chen, X., Huang, Y., Zhu, Z., et al. (2010). Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 20, 510-518.   DOI
22 Cho, K.S., Park, M.K., Kang, S.A., Park, H.Y., Hong, S.L., Park, H.K., Yu, H.S., and Roh, H.J. (2014). Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma. Mediators Inflamm. 2014, 436476.
23 Sun, M., Sun, L., Huang, C., Chen, B.C., and Zhou, Z. (2019). Induction of macrophage M2b/c polarization by adipose tissue-derived mesenchymal stem cells. J. Immunol. Res. 2019, 7059680.
24 Bosnjak, B., Stelzmueller, B., Erb, K.J., and Epstein, M.M. (2011). Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir. Res. 12, 114.   DOI
25 Byers, D.E. and Holtzman, M.J. (2011). Alternatively activated macrophages and airway disease. Chest 140, 768-774.   DOI
26 Carr, W.W. and Szefler, S.J. (2016). Inhaled corticosteroids: ocular safety and the hypothalamic-pituitary-adrenal axis. Ann. Allergy Asthma Immunol. 117, 589-594.   DOI
27 Chakarov, S., Lim, H.Y., Tan, L., Lim, S.Y., See, P., Lum, J., Zhang, X.M., Foo, S., Nakamizo, S., Duan, K., et al. (2019). Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964.   DOI
28 Doherty, T.A. and Broide, D.H. (2019). Airway innate lymphoid cells in the induction and regulation of allergy. Allergol. Int. 68, 9-16.   DOI
29 Fan, X.L., Zhang, Y., Li, X., and Fu, Q.L. (2020). Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell. Mol. Life Sci. 77, 2771-2794.   DOI
30 Shin, J.W., Ryu, S., Ham, J., Jung, K., Lee, S., Chung, D.H., Kang, H.R., and Kim, H.Y. (2021). Mesenchymal stem cells suppress severe asthma by directly regulating Th2 cells and type 2 innate lymphoid cells. Mol. Cells 44, 580-590.   DOI
31 Fricker, M. and Gibson, P.G. (2017). Macrophage dysfunction in the pathogenesis and treatment of asthma. Eur. Respir. J. 50, 1700196.   DOI
32 Gibbings, S.L., Thomas, S.M., Atif, S.M., McCubbrey, A.L., Desch, A.N., Danhorn, T., Leach, S.M., Bratton, D.L., Henson, P.M., Janssen, W.J., et al. (2017). Three unique interstitial macrophages in the murine lung at steady state. Am. J. Respir. Cell Mol. Biol. 57, 66-76.   DOI
33 Girodet, P.O., Nguyen, D., Mancini, J.D., Hundal, M., Zhou, X., Israel, E., and Cernadas, M. (2016). Alternative macrophage activation is increased in asthma. Am. J. Respir. Cell Mol. Biol. 55, 467-475.   DOI
34 Helal, M.A.M., Shaheen, N.E.M., and Abu Zahra, F.A. (2016). Immunomodulatory capacity of the local mesenchymal stem cells transplantation after severe skeletal muscle injury in female rats. Immunopharmacol. Immunotoxicol. 38, 414-422.   DOI
35 Hu, X., Tian, Y., Qu, S., Cao, Y., Li, S., Zhang, W., Zhang, Z., Zhang, N., and Fu, Y. (2017). Protective effect of TM6 on LPS-induced acute lung injury in mice. Sci. Rep. 7, 572.   DOI
36 Huang, Q., Seillet, C., and Belz, G.T. (2017). Shaping innate lymphoid cell diversity. Front. Immunol. 8, 1569.   DOI
37 Huang, Y.C., Parolini, O., La Rocca, G., and Deng, L. (2012). Umbilical cord versus bone marrow-derived mesenchymal stromal cells. Stem Cells Dev. 21, 2900-2903.   DOI
38 Janssen, W.J., Barthel, L., Muldrow, A., Oberley-Deegan, R.E., Kearns, M.T., Jakubzick, C., and Henson, P.M. (2011). Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am. J. Respir. Crit. Care Med. 184, 547-560.   DOI
39 Fang, S.B., Zhang, H.Y., Wang, C., He, B.X., Liu, X.Q., Meng, X.C., Peng, Y.Q., Xu, Z.B., Fan, X.L., Wu, Z.J., et al. (2020b). Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of miR-146a-5p. J. Extracell. Vesicles 9, 1723260.   DOI
40 Fang, S.B., Zhang, H.Y., Meng, X.C., Wang, C., He, B.X., Peng, Y.Q., Xu, Z.B., Fan, X.L., Wu, Z.J., Wu, Z.C., et al. (2020a). Small extracellular vesicles derived from human MSCs prevent allergic airway inflammation via immunomodulation on pulmonary macrophages. Cell Death Dis. 11, 409.   DOI
41 Jeong, E.M., Yoon, J.H., Lim, J., Shin, J.W., Cho, A.Y., Heo, J., Lee, K.B., Lee, J.H., Lee, W.J., Kim, H.J., et al. (2018). Real-time monitoring of glutathione in living cells reveals that high glutathione levels are required to maintain stem cell function. Stem Cell Reports 10, 600-614.   DOI
42 Jiang, Z. and Zhu, L. (2016). Update on the role of alternatively activated macrophages in asthma. J. Asthma Allergy 9, 101-107.   DOI
43 Kang, H., Bang, J.Y., Mo, Y., Shin, J.W., Bae, B., Cho, S.H., Kim, H.Y., and Kang, H.R. (2022). Effect of Acinetobacter lwoffii on the modulation of macrophage activation and asthmatic inflammation. Clin. Exp. Allergy 52, 518-529.   DOI
44 Kim, H.Y., Umetsu, D.T., and Dekruyff, R.H. (2016). Innate lymphoid cells in asthma: will they take your breath away? Eur. J. Immunol. 46, 795-806.   DOI
45 Kim, J., Chang, Y., Bae, B., Sohn, K.H., Cho, S.H., Chung, D.H., Kang, H.R., and Kim, H.Y. (2019). Innate immune crosstalk in asthmatic airways: Innate lymphoid cells coordinate polarization of lung macrophages. J. Allergy Clin. Immunol. 143, 1769-1782.e11.   DOI
46 Kim, R.L., Bang, J.Y., Kim, J., Mo, Y., Kim, Y., Lee, C.G., Elias, J.A., Kim, H.Y., and Kang, H.R. (2022). Mesenchymal stem cells exert their anti-asthmatic effects through macrophage modulation in a murine chronic asthma model. Sci. Rep. 12, 9811.   DOI
47 Klopfleisch, R. (2016). Macrophage reaction against biomaterials in the mouse model - phenotypes, functions and markers. Acta Biomater. 43, 3-13.   DOI
48 English, K., Barry, F.P., and Mahon, B.P. (2008). Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol. Lett. 115, 50-58.   DOI
49 Chen, K., Wang, D., Du, W.T., Han, Z.B., Ren, H., Chi, Y., Yang, S.G., Zhu, D., Bayard, F., and Han, Z.C. (2010). Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin. Immunol. 135, 448-458.   DOI
50 Duan, M., Steinfort, D.P., Smallwood, D., Hew, M., Chen, W., Ernst, M., Irving, L.B., Anderson, G.P., and Hibbs, M.L. (2016). CD11b immunophenotyping identifies inflammatory profiles in the mouse and human lungs. Mucosal Immunol. 9, 550-563.   DOI