• Title/Summary/Keyword: Multivariate control charts

Search Result 57, Processing Time 0.019 seconds

Switching properties of multivariate Shewhart control charts

  • Kim, Bo-Jung;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.911-925
    • /
    • 2017
  • We investigate the properties of multivariate Shewart control charts with VSI procedure for monitoring simultaneous monitoring mean vector and covariance matrix in term of ANSW (average number of switches), probability of switch and ASI (average sampling interval), ATS (average time to signal). From examining the ANSW values, we know that it does not switch frequently. The VSI control charts are superior to the corresponding FSI control charts in terms of ATS. And, it can be also seen that the VSI procedures have substantially fewer switches for small or moderate shifts of the mean vector and variances.

Bootstrap-Based Fault Identification Method (붓스트랩을 활용한 이상원인변수의 탐지 기법)

  • Kang, Ji-Hoon;Kim, Seoung-Bum
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.2
    • /
    • pp.234-243
    • /
    • 2011
  • Multivariate control charts are widely used to monitor the performance of a multivariate process over time to maintain control of the process. Although existing multivariate control charts provide control limits to monitor the process and detect any extraordinary events, it is a challenge to identify the causes of an out-of-control alarm when the number of process variables is large. Several fault identification methods have been developed to address this issue. However, these methods require a normality assumption of the process data. In the present study, we propose a bootstrapped-based $T^2$ decomposition technique that does not require any distributional assumption. A simulation study was conducted to examine the properties of the proposed fault identification method under various scenarios and compare it with the existing parametric $T^2$ decomposition method. The simulation results showed that the proposed method produced better results than the existing one, especially in nonnormal situations.

Performances of VSI Multivariate Control Charts with Accumulate-Combine Approach

  • Chang, Duk-Joon;Heo, Sun-Yeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.973-982
    • /
    • 2006
  • Performances of variable sampling interval(VSI) multivariate control charts with accumulate-combine approach for monitoring mean vector of p related quality variables were investigated. Shewhart control chart is also proposed to compare the performances of CUSUM and EWMA charts. Numerical comparisons show that performances of CUSUM and EWMA charts are more efficient than Shewhart chart for small or moderate shifts, and VSI chart is more efficient than fixed sampling interval(FSI) chart. We also found that performances of the CUSUM or EWMA chart with accumulate-combine approach are substantially efficient than those of Shewhart chart.

  • PDF

Local T2 Control Charts for Process Control in Local Structure and Abnormal Distribution Data (지역적이고 비정규분포를 갖는 데이터의 공정관리를 위한 지역기반 T2관리도)

  • Kim, Jeong-Hun;Kim, Seoung-Bum
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.337-346
    • /
    • 2012
  • Purpose: A Control chart is one of the important statistical process control tools that can improve processes by reducing variability and defects. Methods: In the present study, we propose the local $T^2$ multivariate control chart that can efficiently detect abnormal observations by considering the local pattern of the in-control observations. Results: A simulation study has been conducted to examine the property of the proposed control chart and compare it with existing multivariate control charts. Conclusion: The results demonstrate the usefulness and effectiveness of the proposed control chart.

Variable sampling interval control charts for variance-covariance matrix

  • Chang, Duk-Joon;Shin, Jae-Kyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.4
    • /
    • pp.741-747
    • /
    • 2009
  • Properties of multivariate Shewhart and EWMA (Exponentially Weighted Moving Average) control charts for monitoring variance-covariance matrix of quality variables are investigated. Performances of the proposed charts are evaluated for matched fixed sampling interval (FSI) and variable sampling interval (VSI) charts in terms of average time to signal (ATS) and average number of samples to signal (ANSS). Average number of swiches (ANSW) of the proposed VSI charts are also investigated.

  • PDF

Properties of variable sampling interval control charts

  • Chang, Duk-Joon;Heo, Sun-Yeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.819-829
    • /
    • 2010
  • Properties of multivariate variable sampling interval (VSI) Shewhart and CUSUM charts for monitoring mean vector of related quality variables are investigated. To evaluate average time to signal (ATS) and average number of switches (ANSW) of the proposed charts, Markov chain approaches and simulations are applied. Performances of the proposed charts are also investigated both when the process is in-control and when it is out-of-control.

Multivariate EWMA Control Chart for Means of Multiple Quality Variableswith Two Sampling Intervals

  • Chang, Duk-Joon;Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.5 no.3
    • /
    • pp.151-156
    • /
    • 2012
  • Because of the equivalence between control chart procedures and hypothesis testing, we propose to use likelihood ratio test (LRT) statistic $Z_i^2$ as the multivariate control statistic for simultaneous monitoring means of the multivariate normal process. Properties and comparisons of the proposed control charts are explored and conducted for matched fixed sampling interval (FSI) and variable sampling interval (VSI) with two sampling interval charts. The result of numerical comparisons shows that EWMA chart with two sampling interval procedure is more efficient than the corresponding FSI chart for small or moderate changes. When large shift of the process has occurred, we also found that Shewhart chart is more efficient than EWMA chart.

CUSUM Chart to Monitor Dispersion Matrix for Multivariate Normal Process

  • Chang, Duk-Joon;Kwon, Yong-Man;Hong, Yeon-Woong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.89-95
    • /
    • 2003
  • Cumulative sum(CUSUM) control charts for monitoring dispersion matrix under multivariate normal process are proposed. Performances of the proposed CUSUM charts are measured in terms of average run length(ARL) by simulation. Numerical results show that small reference values of the proposed CUSUM chart is more efficient for small shifts in the production process.

  • PDF

Implementation of Integrated Control Chart Using Zone, Multivariate $T^2$ and ARIMA (Zone, 다변량 $T^2$, ARIMA를 이용한 통합관리도의 적용방안)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.259-265
    • /
    • 2010
  • The research discusses the implementation of control charts tools of MINITAB which are classified according to the type of data and the existence of subgrouping, weight and multivariate covariance. The paper presents the three integrated models by the use of zone, multivariate $T^2$-GV(Generalized Variance) and ARIMA(Autoregressive Integrated Moving Average).

  • PDF

Multivariate Control Charts for Autocorrelated Process

  • Cho, Gyo-Young;Park, Mi-Ra
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.289-301
    • /
    • 2003
  • In this paper, we propose Shewhart control chart and EWMA control chart using the autocorrelated data which are common in chemical and process industries and lead to increase the number of false alarms when conventional control charts are applied. The effect of autocorrelated data is modeled as a autoregressive process, and canonical analysis is used to reduce the dimensionality of the data set and find the canonical variables that explain as much of the data variation as possible. Charting statistics are constructed based on the residual vectors from the canonical variables which are uncorrelated over time, and the control charts for these statistics can attenuate the autocorrelation in the process data. The charting procedures are illustrated with a numerical example and simulation is conducted to investigate the performances of the proposed control charts.

  • PDF