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Abstract

Properties of multivariate variable sampling interval (VSI) Shewhart and CUSUM
charts for monitoring mean vector of related quality variables are investigated. To
evaluate average time to signal (ATS) and average number of switches (ANSW) of the
proposed charts, Markov chain approaches and simulations are applied. Performances
of the proposed charts are also investigated both when the process is in-control and
when it is out-of-control.
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1. Introduction

The purpose of a control chart is to detect assignable causes of variation so that these
causes can be found and eliminated. During the control process, one wishes to detect any
departure from a satisfactory state as quickly as possible and identify which attributes are
responsible for the deviation.

A control chart is maintained by taking samples from the process and plotting in time
order on the chart some control statistic which is a function of the samples. The operation
of a control chart in detecting process changes can be described simply in terms of a control
statistic and two disjoint regions, the signal region and the in-control region.

Traditional practice in using a control chart is to take samples from the process at fixed
sampling interval (FSI). In recent years, application of VSI control charts has become quite
frequent and several papers have been published about them in which the sampling interval
is varied as a function of what is observed from the process.

One disadvantage of VSI procedure is that frequent switching between different sampling
intervals requires more cost and effort to administer the process than corresponding FSI
procedure. Amin and Letsinger (1991) studied the switching behavior of CUSUM charts with
and without runs rules. They showed that VSI CUSUM chart has a much lower frequency
of switching between the two sampling intervals then the VSI Shewhart chart in univariate
X-chart.
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In this paper, we investigate the properties VSI scheme for monitoring mean vector in
terms of ATS, ANSS and ANSW of the proposed multivariate Shewhart and CUSUM charts.
By Markov chain method or simulation, we found that performances of VSI CUSUM chart
is more efficient then corresponding Shewhart chart in terms of ANSS, ATS and ANSW for
small or moderate changes.

2. Description of some control procedures

Assume that the process of interest has p (p > 2) quality variables represented by the ran-

dom vector X' = (X1, Xs, -+, X,) and we take a sequence of random vectors X |, X,, X, -
where X, = (X';;,---,X',,,) is a sample of observations at the sampling time i (i = 1,2, )
and X,;; = (Xij1,- -+, Xijp)'. It will be also assumed that the successive observation vectors

are distributed independent multivariate normal distribution with N, (i, Y)). Hence, the dis-
tribution of X is indexed by a set of parameters § = (i, ¥) where p is the mean vector and
Y is the dispersion matrix of X. Let 8, = (HO’ 3p) be the known target values for 6.

2.1. Evaluating sample statistic

We can consider control procedures as a sequence of independent tests where each test
is actually equivalent to a sequential probability ratio test (SPRT) for testing whether the
process is in-control or out-of-control state.

Therefore, control chart can be considered as a repetitive test of significance where each
quality characteristic is defined by p quality variables X;, Xs,---,X,, we can obtain a
sample statistic for monitoring p by using the likelihood ratio test (LRT) statistic for testing
Hy:p= o VS Hy:p# Ky where ¥ is known. The regions above the upper control limit

(UCL) corresponds to the LRT rejection region. For the ¢ th sample, likelihood ratio \; can
be expressed as

— (X — )50 (X — )

Ai = exp 2(

Let us define Z? = —21In \;. Then,

Thus, LRT statistic Z? can be used as the control statistic for monitoring u of p related
quality variables. Alt (1982) described various types of multivariate Shewhart type T charts
based on Hotelling’s T? = n(X, — Bo)'S™ (X, — k) statistic and provided recommendations
for implementation where S is the covariance matrix of the sample.

2.2. ANSS of FSI control chart

Ability of a control chart to detect any changes in the process is determined by the length
of time required to signal. Thus, a good control chart detects changes quickly in the process
while producing few false alarms.

In traditional FSI chart, the length of the sampling interval between sampling times t; and
t;—1 is constant for all ¢ (¢ = 1,2,---) and the expected time to signal is simply the product



Properties of variable sampling interval control charts 821

of the average number of samples to signal (ANSS) and the length of the fixed sampling
interval. The ANSS has the same definition as the average run length (ARL) but it seems
preferable to use ANSS because it is more descriptive.

2.3. ATS of VSI control chart

The basic idea of VSI control chart is that the time interval should be short if there is
some indication of a process change and should be long if there is no indication of a process
change. If the indication of a process change is strong enough, then the VSI chart signals
in the same way as the FSI control chart. Hence, the idea of using VSI control chart is
intuitively reasonable.

For VSI chart, the sampling times are random variables and the sampling interval ¢; 1 —¢;
depends on the past sample informations X, X,, -, X,. Hence, the time required to signal
is not the product of the number of samples and a fixed sampling interval. Thus, for the
performances of a VSI chart, it is necessary to keep track of both ANSS and ATS.

2.4. ANSW of VSI control chart

VSI procedures have been shown to be more efficient when compared to the correspond-
ing FSI procedures with respect to the ATS. But, because of frequent switching between
different sampling intervals, VSI scheme requires more cost and effort to administer the
process than corresponding FSI scheme. Hence, frequent switching between the different
sampling intervals can be a complicating factor in the application of control charts with VSI
procedures.

Therefore, it is necessary to define the number of switches (NSW) as the number of switches
made from the start of the process until the chart signals, and let the average number of
switches (ANSW) be the expected value of the NSW. The ANSW of VSI chart with two
sampling intervals can be obtained as follows

ANSW = (ANSS — dyp) - P(switch) (2.2)
And, the probability of switch is given by
P(SWitCh) = P(dl) . P(dg‘dl) + P(dg) . P<d1|d2) (23)

where P(d;) is the probability of using sampling interval d;, and P(d;|d;) is the conditional
probability of using sampling interval d; in the current sample given that the sampling
interval d; (d; # d;) was used in the previous sample. To quantify the amount of switching,
average switching rate (ASWR)) can be defined as

ASWR = ANSW/ANSS. (2.4)

A low value of the ASWR will usually be desirable from the administrative point of view,
but a value of the ASWR very close to zero may not be achievable in a chart that is responsive
to changes in the process.
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3. Properties of Shewhart chart

Shewhart charts, one of the most widely used control chart, are simple to use and fast in
detecting large shifts from the target value. FSI Shewhart chart for ;4 based on the sample
statistics Z2 in (2.1) signals whenever

Z? > hg. (3.1)
And for VSI Shewhart chart based on Z?, suppose that the sampling interval ;

dy is used when Z? € (gs, hs],
dy is used when Z? € (0, gs],

where gs < hg and d; < da. The percentage point of LRT statistic Z? can be obtained
from chi-square distribution with p degrees of freedom, and the parameters gg and hg
can be obtained to satisfy a desired ATS and ANSS. When the process is in-control, the
statistic Z? has a chi-squared distribution. And when the process has shifted to p from

the target My Z? has a non-central chi-square distribution with noncentrality parameter

% =n(p— HO)/Eal(H — 1)

3.1. ANSS of Shewhart chart

Let g be the probability that a control statistic falls out-of-control limits and d be a
sampling interval for FSI scheme. Then, the time required to signal T" is dN where N is the
number of samples to signal. Since N is geometrically distributed with parameter ¢, ANSS
is

1
E(N) =
q
and the variance of N is given by
(1-4q)
V(N) = Z

3.2. ATS of Shewhart chart

Reynolds and Arnold (1989) showed that if the consecutive observations are independent,
then the VSI control chart with lower number of different sampling intervals is more efficient
in terms of ATS and using two sampling intervals spaced as far apart as possible is optimal
for one- and two-sided Shewhart chart.

Following Reynolds et al. (1990), we use two sampling intervals di,ds (d; < d2), and let
1; represent the expected number of samples before the signal that d;(i = 1,2) is used. For
simplicity, we assume that the interval used before the first sample, is a fixed constant, say
dp. Given the definitions of ATS, ANSS, ¥, and 9, it is easy to see that

ANSS =1+ Y1 + Y9 and ATS = dy + dy91 + datbs.
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3.3. ANSW of Shewhart chart

To evaluate P(switch) in (2.2), it is convenient when the distribution of sample statis-
tic is known. When the control statistic is continuous, the continuous state space of the
control statistic is partitioned into a finite number of discrete intervals and the probability
distribution of the control statistic is discretized as the Markov chain approach. Let the
interval of control statistic Yy be divided into in-control region C' and out-of-control region
C' = (h,o0). Suppose that the region C is partitioned into r states Ep, Es,--- , E, where
each interval corresponds to a state of Markov chain and absorbing state C' = {z|Y} > h}
is a signal region. Since Y} is continuous, let a discretized version 171@ of Y, € E; be the
midpoint of E;. The probability of moving from any state ¢ to any other state j can be
denoted as p;j(k) = P(Yy +1 € E;|Y, € E;) fori,j=1,2,--- ,r+1land k=0,1,2,---. In
this paper, p;;(k) will be written briefly as p;;. The transition probability matrix P = [p;;]
can be partitioned as

_ @ I-Q)1
p-[g 00N (32)
where @ is the r X r transition matrix corresponding to the transient state, I is the identity
matrix, 0 is an 7 x 1 vector of 0’ s and 1 is the r x 1 vector of 1’s. Here, we present pgjs of
P in VSI Shewhart chart with two sampling intervals based on Z? in (2.1), and we denote
F(-) as the distribution function of sample statistic. Suppose that this chart signals when
Z2? € (', dy is used when Z? € (g, h] and dy is used when Z? € (0, g].

Assume that the interval (0, g] is divided into m states and (g, ] is divided into (r — m)
states then w and v are g/m and (h — g)/(r — m), respectively.

Then the probability of switch P(switch) can be expressed as

P(switch) = Y P(Z} € Ei)-{ Y P(Ziy, € Ej|Z; € Ey) (3.3)
i=m+1 j=1
+> P(ZE € E)-Q Y. P(Ziy, € Ei|Z} € )
i=1 j=m+1

Because the Shewhart chart uses only the information from the last sample and the successive
observation vectors are independent, the conditional probabilities in (3.3) can be expressed
as Z_:nzl P(ZI%JA € Ej|Zl? € k)= 27:1 P(Z%Jrl € Ej).

Then the transition probability p;; is as follows: For i=1, 2, ---, m,

P[Z} € E)] = F(jw) — F[(j — 1w,

and

pij:F[(g—i—(j—m)v]—F[g—(j—m—l)v],(j:m+1,m+2,~--,r).
And, fori=m+1,m+2,---,r,
P(Z} € Bi| = Fl(g+ (i —m)v] — Flg — (i — m — 1)v]
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and

Dij :F(jw)_F[(j_l)w]’(j:1527"' vm)'

The percentage point of LRT statistic Z? can be obtained from the chi-square distribution
with p degrees of freedom.

4. Properties of CUSUM chart

The CUSUM control chart is a good alternative to the Shewhart control chart when small
shifts are important. Vargas et al. (2004) presented a comparative study of the performance
of CUSUM and EWMA charts in order to detect small changes of process average.

4.1. FSI and VSI CUSUM procedures

For monitoring mean vector of quality variables, the CUSUM statistic can be considered
as a function of the sample means. The most direct and obvious FSI CUSUM chart for p
based on Z? (i = 1,2,--+) can be constructed as

Y; = max{Y; 1,0} + (Z? — k), (4.1)

where Yy = wl(,>0) and reference value k ( & > 0 ). This chart signals whenever Y; > hc.
And for VSI CUSUM chart, suppose that the two sampling intervals;

dy is used whenY; € (g¢,hcl,
dy is used whenY; € (—k,gc],

where go < he and d; < ds.

When the process is in-control or mean vector pu has changed, the performances of the
CUSUM chart in (4.1) and the design parameters gc and he can be obtained to satisfy a
desired ATS and ANSS by Markov chain approach. And the ANSW values of the VSI chart
were obtained by simulation.

4.2. Markov chain method for evaluating ANSS and ATS

To design and evaluate performances of the proposed multivariate CUSUM charts, we
use the conditions in section 3.3. From the transition matrix P in (3.2), we can obtain the
fundamental matrix M as

M=(1-Q)"" =[my], (4.2)

where m;; is the expected number of visits to the transient state j before absorption, given
that the Markov chain starts in transient state i.

For VSI chart, if we use a finite number of interval lengths di,ds, - - - ,d, where d; < dy <
-+ < dy. The region C be partitioned into n regions Cy,Cs,--- ,C, where C; is the region
in which the interval d; is used when Y; € C;.
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Let b= (b1,bo, -+ ,b.), N= (N1, No,--- ,N,) and T = (T1,T5,- - - , T}-) are the vectors of
sampling interval, NSS and TS, respectively. The ANSS vector is

E(N) = M1 (4.3)

and
V(N) = (2M —I)- E(N) — [E(N)]®?, (4.4)

where [E(N)](2) is a vector whose i th component is the square of the i th component of
E(N). Hence when the process starts in state 4, the ANSS N; and the variance V (IV;) is
given as

E(N;) = Zmij
j=1
and
V(N) =2 mawmug — Y mij — (Y miy)?
k=1j=1 Jj=1 J=1
Following Reynolds (1988), the ATS vector is
E(T)= Mb (4.5)

and
V(T) = MB(2M — I)b — [Mb]®, (4.6)

where B is a diagonal matrix with elements of corresponding sampling interval and [M Q]@)
is a vector whose i th component is the square of the ¢ th component of Mb. Hence when
the process starts in state 4, the ATS T; and the variancce V(T;) is given as

B(T) = Y ity (7)

and

V(Tz) =2 Z Z mikmkjbkbj - Z m”bf - (Z mijbj)Q (48)
k=1 j=1 j=1 j=1
4.2.1. ANSS for FSI CUSUM chart

Assume that the in-control region C' = (—o0, h] is devided r states such that the interval
(—00,0] is 1st state and the interval (0, h] is divided into (r — 1) states then w = h/(r — 1)
and we denote F'(-) as the distribution function of control statistic.

Then the transition probability p;; in (3.2) is as follows: For ¢ =1,

V{FM =1
PO PG - Vw4 k= FIG - 2w+ k] j=2,3 .1
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For:=2,3,---,n,

3
F[—(i—§)w+k} J=1

Dij = 1 1
Fl(j =i+ Ju+kl = Fl(G—i—Jw+k] j=23r

4.2.2. ATS for VSI CUSUM chart

For the two sampling intervals VSI CUSUM chart based on Z? in (4.1), suppose that
this chart signals when Y; € C’, the sampling interval dy is used when Y; € (g,h] and
dy is used when Y; € (—o0,g]. Let the interval (—oo,00) be divided into in-control region
Cy = (=00, 4], C2 = (g, h] and out-of-control region C’ = (h, o0).

Suppose that states 1,2,--- ,m used dy and states m+1,---,7 used d;. Consider first the
case g > 0. Then the state 1 corresponds to Y; < 0 and Y; = 0. Let w = g/(m — 1). Then
for j =2,3,--- ,m state j corresponds to (j —2)w < Y; < (j —)w and Y; = (j —3/2)w. Let
v=(h—g)/(r—m). Then for j = m+1,--- ,r, the state j corresponds to g+ (j —m—1)v <
Y <g+(j—mvandV; =g+ (j —m — 0.5).

The transition probability p;; for @ is as follows : For ¢ =1,

F(k) j=
py = FIU—Dw+k = F[(j - 2)w + K] j=2,-,m
Flg+(G—-mv+kl—Flg+G-—m—-1Dv+k] j=m+1,--,r.

Fori=2,3,---,m,

AR j=1
FW—i+§w+H—FW—i—§w+H §=2,3,--,m

Dij = 1
Fl(m—i+ 2w+ (j — m)v + K]

2
o1 ) )
—F[(m—z—&—?w—l—(g—m—l)v—i—k] j=m+1,---,r
Fori=m+1m+2.---,r,
, 1 ,
Fl-g—(i—m— -)v+ k| j=1

2

F[f(mfj)wf(ifmf%)erk]
pij = 1
—F[f(mfjJrl)wf(ifmfi)erk] j=2,3,---,m

1 1
F[(j—i—|—§)v—|—k]—F[(j—i—§)v—|—k] j=m-+1,---,r
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For the case g < 0 two states are needed for nonpositive values Y;. State 1 corresponds
to Y; < g where ds is used, and state 2 corresponds to g < Y; < 0 where d; is used. Thus
m = 2. Let w = h/(r — 2). Then for state 1

F(g+k) j=1
p1y = F(k) = F(g+k) j=2
FlG—2w+k =F[J—-3)w+k j=3,--,r

For state 2, poj = pyj for j =1,2,--- | r.
Fori=3,---,r,

Flo— (i~ 2w+ K] j=1

Pij = F[—(i—g)w+k}—F[g—(z'—g)erk:] j=2

1 1
Flj—i+Juw+k = Fl(G—i—Juw+k] j=34-r
For the case, g = 0. only one state corresponding to Y; < 0 is needed to use ds and thus
m = 1. Let w be h/(r —1). Then for i =1

Fk@—;w+ﬂ j=1
FW—i+§w+H—FW—i—§w+H §=2,3,- .1

Fori=2,3,---,r,

R j=1

1 1
Flj—i+Ju+k = Fl(G—i-Ju+k] j=2.3-r

5. Concluding remarks

In order to evaluate the properties of the proposed charts when the process are in-control
or changed, some kinds of standards for comparison are necessary. For simplicity in our
computation, we assume that the target mean vector u_ = 0’, all diagonal and off-diagonal
elements of ¥y are 1 and 0.3, respectively. The numerical results were obtained when the
ANSS and ATS of the in-control state was approximately equal to 200.0, dy = 1 and the
sample size for each variable was five for p = 3.

After the reference value of the proposed CUSUM charts have been determined, the design
parameters h's and ¢’s of the CUSUM charts were calculated by Markov chains with the
number of transient states » = 100. And the ANSS, ATS and ANSW values when the
process has changed were also obtained by Markov chains with the number of transient
states r = 100 or simulation with 10,000 runs.
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Figure 5.1 Performances of the proposed Shewhart and CUSUM charts ( p=3 )

[%2]
[}
T S
[
>
=
(%2}
=2
<
s S | S W . R
on- 025 05 075 100 15 200 25 300 35 400
target N
changed scale of noncentrality parameter t
‘+Shewhan(\/8\) —m— CUSUM(VS1,k=3.2) CUSUM(VSI,k=3.5) CUSUM(VSl,k:e.B)\

Figure 5.2 ANSW of the proposed Shewhart and CUSUM charts ( p=3 )
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Figure 5.3 ASWR of the proposed Shewhart and CUSUM charts ( p=3 )

When r is greater than 100 for various p, we found that asymptotic ANSW and ATS using
Markov chain method tends to be stabilized.
From the numerical results, we found the following properties. When small or moderate
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changes in the process have occurred, the ANSW and ASWR for CUSUM procedure is
substantially less than those of Shewhart procedure.

The properties and comparison of the proposed procedures are given in Figure 4.1 through
Figure 4.3. As illustrated in figures, small reference values are efficient for small shifts from
the target value and vice versa in multivariate CUSUM charts in terms of ANSS, ATS and
ANSW.

The optimal selection of reference value £ in CUSUM procedure depends on the size of
the shift in the mean vector to be detected quickly. And, it may be possible to improve the
performance of the proposed chart at selected off-target conditions with alternate choices of

k.

References

Alt, F. B. (1982). Multivariate quality control in the encyclopedia of statistical sciences, eds. S. Kotz and
Johnson Wiley, New York.

Amin, R. W. and Letsinger. W. C. (1991). Improved swiching rules in control procedures using variable
sampling intervals. Communications in Statistics - Simulation and Computation, 20, 205-230.

Brook, D. and Evans, D. A. (1972). An approach to the probability distribution of CUSUM run length.
Biometrika, 59, 539-549.

Chang, D. J. and Shin, J. K. (2009). Variable sampling interval control charts for variance-covariance
matrix. Journal of the Korean Data & Information Science Society, 20, 741-747.

Lee, S., Lee, T. and Na, O. (2010). Cusum of squares test for discretely sample from diffusion processes.
Journal of the Korean Data € Information Science Society, 21, 179-183.

Mason, R.L. and Young, J. C. (1999). Improving the sensitivity of the T? statistic in multivariate process
control. Journal of Quality Technology, 31, 155-165.

Na, O., Ko, B. and Lee S. (2010). Cusum of squares test for discretely observed sample from multidimen-
sional diffusion processes. Journal of the Korean Data € Information Science Society, 21, 555-560.

Reynolds, M. R., Jr. and Arnold, J. C. (1989). Optimal one-sided Shewhart control charts with variable
sampling intervals between samples. Sequential Analysis, 8, 51-77.

Reynolds, M. R., Jr. and Amin, R. W. and Arnold, J. C. (1990). CUSUM charts with variable sampling
intervals. Technometrics, 32, 371-384.

Song, G, Park, B. and Kang, H. (2007). A CUSUM algorithm for early detection of structural changes in
won/dollar exchange market. Journal of the Korean Data € Information Science Society, 18, 345-356.

Vargas, V. C. C., Lopes, L. F. D. and Sauza, A. M. (2004). Comparative study of the performance of the
cusum and EWMA control charts. Computer & Industrial Engineering, 46, 707-724.



