• Title/Summary/Keyword: Multivariate Regression Model

Search Result 418, Processing Time 0.029 seconds

An application to Multivariate Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.177-186
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the correlated response variables are intrested, we have to extend the univariate zero-inflated regression model to multivariate model. In this paper, we study and simulate the multivariate zero-inflated regression model. A real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of multivariate zero-inflated Poisson regression model with the decision tree model.

  • PDF

Alternative Derivation of Stepwise Multivariate Linear Regression (段階的 多變量 線型回歸에 관하여)

  • 申敏雄;金周成
    • Journal of the Korean Statistical Society
    • /
    • v.7 no.2
    • /
    • pp.105-108
    • /
    • 1978
  • Freund, Vail, and Ross, Goldberger and Jochems and Goldberger have given some results for the stepwise estimation of the parameters of a univariate regression model, D.G. Kabe gave similar results for a multivariate linear regression model. We give here alternative derivation of some results derived by D.G. Kabe.

  • PDF

Misspecification in Multivariate Regression

  • Shin, Min-Woong;Park, Chi-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 1980
  • Hocking, Rao, Rosenberg and Levy and Walls and Weeks have given some results for the misspecification in univariate regression model. We give similar results for a multivariate regression model.

  • PDF

An Equivariant and Robust Estimator in Multivariate Regression Based on Least Trimmed Squares

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.1037-1046
    • /
    • 2003
  • We propose an equivariant and robust estimator in multivariate regression model based on the least trimmed squares (LTS) estimator in univariate regression. We call this estimator as multivariate least trimmed squares (MLTS) estimator. The MLTS estimator considers correlations among response variables and it can be shown that the proposed estimator has the appropriate equivariance properties defined in multivariate regression. The MLTS estimator has high breakdown point as does LTS estimator in univariate case. We develop an algorithm for MLTS estimate. Simulation are performed to compare the efficiencies of MLTS estimate with coordinatewise LTS estimate and a numerical example is given to illustrate the effectiveness of MLTS estimate in multivariate regression.

Bayesian Estimation for the Multiple Regression with Censored Data : Mutivariate Normal Error Terms

  • Yoon, Yong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.165-172
    • /
    • 1998
  • This paper considers a linear regression model with censored data where each error term follows a multivariate normal distribution. In this paper we consider the diffuse prior distribution for parameters of the linear regression model. With censored data we derive the full conditional densities for parameters of a multiple regression model in order to obtain the marginal posterior densities of the relevant parameters through the Gibbs Sampler, which was proposed by Geman and Geman(1984) and utilized by Gelfand and Smith(1990) with statistical viewpoint.

  • PDF

Residuals Plots for Repeated Measures Data

  • PARK TAESUNG
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.187-191
    • /
    • 2000
  • In the analysis of repeated measurements, multivariate regression models that account for the correlations among the observations from the same subject are widely used. Like the usual univariate regression models, these multivariate regression models also need some model diagnostic procedures. In this paper, we propose a simple graphical method to detect outliers and to investigate the goodness of model fit in repeated measures data. The graphical method is based on the quantile-quantile(Q-Q) plots of the $X^2$ distribution and the standard normal distribution. We also propose diagnostic measures to detect influential observations. The proposed method is illustrated using two examples.

  • PDF

Test for an Outlier in Multivariate Regression with Linear Constraints

  • Kim, Myung-Geun
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.473-478
    • /
    • 2002
  • A test for a single outlier in multivariate regression with linear constraints on regression coefficients using a mean shift model is derived. It is shown that influential observations based on case-deletions in testing linear hypotheses are determined by two types of outliers that are mean shift outliers with or without linear constraints, An illustrative example is given.

A Robust Estimator in Multivariate Regression Using Least Quartile Difference

  • Jung Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • We propose an equivariant and robust estimator in multivariate regression model based on the least quartile difference (LQD) estimator in univariate regression. We call this estimator as the multivariate least quartile difference (MLQD) estimator. The MLQD estimator considers correlations among response variables and it can be shown that the proposed estimator has the appropriate equivariance properties defined in multivariate regressions. The MLQD estimator has high breakdown point as does the univariate LQD estimator. We develop an algorithm for MLQD estimate. Simulations are performed to compare the efficiencies of MLQD estimate with coordinatewise LQD estimate and the multivariate least trimmed squares estimate.

Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)

  • Avci-Karatas, Cigdem
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.583-594
    • /
    • 2019
  • In the areas highly exposed to earthquakes, concrete-filled steel tube columns (CFSTCs) are known to provide superior structural aspects such as (i) high strength for good seismic performance (ii) high ductility (iii) enhanced energy absorption (iv) confining pressure to concrete, (v) high section modulus, etc. Numerous studies were reported on behavior of CFSTCs under axial compression loadings. This paper presents an analytical model to predict ultimate load capacity of CFSTCs with circular sections under axial load by using multivariate adaptive regression splines (MARS). MARS is a nonlinear and non-parametric regression methodology. After careful study of literature, 150 comprehensive experimental data presented in the previous studies were examined to prepare a data set and the dependent variables such as geometrical and mechanical properties of circular CFST system have been identified. Basically, MARS model establishes a relation between predictors and dependent variables. Separate regression lines can be formed through the concept of divide and conquers strategy. About 70% of the consolidated data has been used for development of model and the rest of the data has been used for validation of the model. Proper care has been taken such that the input data consists of all ranges of variables. From the studies, it is noted that the predicted ultimate axial load capacity of CFSTCs is found to match with the corresponding experimental observations of literature.

Nonlinear structural modeling using multivariate adaptive regression splines

  • Zhang, Wengang;Goh, A.T.C.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.569-585
    • /
    • 2015
  • Various computational tools are available for modeling highly nonlinear structural engineering problems that lack a precise analytical theory or understanding of the phenomena involved. This paper adopts a fairly simple nonparametric adaptive regression algorithm known as multivariate adaptive regression splines (MARS) to model the nonlinear interactions between variables. The MARS method makes no specific assumptions about the underlying functional relationship between the input variables and the response. Details of MARS methodology and its associated procedures are introduced first, followed by a number of examples including three practical structural engineering problems. These examples indicate that accuracy of the MARS prediction approach. Additionally, MARS is able to assess the relative importance of the designed variables. As MARS explicitly defines the intervals for the input variables, the model enables engineers to have an insight and understanding of where significant changes in the data may occur. An example is also presented to demonstrate how the MARS developed model can be used to carry out structural reliability analysis.