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Abstract

We propose an equivariant and robust estimator in multivariate regression model
based on the least trimmed squares (L'TS) estimator in univariate regression. We call
this estimator as multivariate least trimmed squares (MLTS) estimator. The MLTS

" estimator considers correlations among response variables and it can be shown that
the proposed estimator has the appropriate equivariance properties defined in
multivariate regression. The MLTS estimator has high breakdown point as does LTS
estimator in univariate case. We develop an algorithm for MLTS estimate. Simulation
are performed to compare the efficiencies of MLTS estimate with coordinatewise LTS
estimate and a numerical example is given to illustrate the effectiveness of MLTS
estimate in multivariate regression.

KeyWords @ Breakdown point; Equivariance; Least trimmed squares estimator; Multivariate
regression; Outliers.

1. Introduction

In linear regression model the least squares (LS) estimator is most well known, because it
is simple and has the closed form solution to a certain systems of linear equations. Under the
assumption of normality of random errors the LS estimator is optimal. However, LS estimator
is very sensitive to outliers. In fact even a single outlier may destroy LS estimate. Many
alternative methods in univariate linear regression models have been proposed. M, GM
estimators are commonly used (Hampel et al., 1986), but the breakdown points of these
estimators cannot exceed the inverse of the dimension of explanatory variables space. The
least median of squares (LMS) and least trimmed squares (LTS) estimators (Rousseeuw and
Leroy, 1987) have 50% breakdown point, but a low asymptotic efficiency. A vast amount of
literature has treated robust estimators in univariate linear regressions. In multivariate
regression model Rac (1988) used univariate least absolute deviation regression separately for
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each response. Chakraborty (1999) suggested a new extension of least absolute deviation
regression based on the so-called transformation and retransformation method. Also
Rousseeuw et al. (2001) and Ollila et al. (2002) proposed robust multivariate regression
estimators based on robust estimation of the joint location vector and scatter matrix of the
explanatory and response variables.

In this paper we propose an affine and robust estimator of regression parameters in
multivariate linear regression model. This estimator is based on LTS estimator in univariate
regression model, which is a most popular high breakdown estimator and more efficient than
LMS estimator. Even though LS estimator is not robust, it is affine equivariant under
nonsingular linear transformations of the response variables. The lack of this property makes
estimator practically meaningless when the values of regression variables are measured in
different scales. The use of univariate regression estimator for each coordinate of the response
vector, for example Rao (198R), does not take into account of correlations among response
variables. It is called a coordinatewise estimator. Moreover such an approach in multivariate
linear regression models does not assure the affine equivariance. The estimator proposed in
Section 2 adopts transformation and retransformation approach (Chakraborty and Chaudhuri,
1998; Chakraborty, 1999) for regression equivariance and it also uses a covariance matrix of
error vectors. The new estimator has 509 breakdown point, because it inherits the breakdown
point of LTS estimator.

In Section 2 we define a multivariate regression model and propose a new estimator. We call
this estimator as multivariate least trimmed squares (MLTS) estimator. We develop an
algorithm to compute MLTS estimate. In Section 3 we describe statistical properties of the
estimator such as breakdown point and affine equivariance in multivariate linear regression
model. In Section 4 simulation and a numerical example are given to illustrate the
effectiveness of our proposed estimate. Simulation results show that MLTS estimate appears
to be more efficient than coordinatewise LTS estimate when there exist correlations among
variables of error vector. From a numerical example we observe that MLTS estimate gives
very useful influence information about observations in multivariate regressions.

2. Multivariate Least Trimmed Squares Estimator

Consider the multivariate linear regression model

y,= BT x;+ e ; i=1,..,mn, (1)
where the size of response vector y; is d, the length of regressor x;is p, Bis a pXd
matrix of unknown coefficient parameters, and e;s are random errors uncorrelated with %,
The first element of x; is one, so the number of regressor variables is (p—1). The e;s

are independently and identically distributed. Assume that cov( e;)= 2 is nonsingular.
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Let @ be a subset of {1,...,%n} having d+p elements. Write a=1 U J where I={i,...,17,}
and {jj,...,74}. Let X be the pXp matrix whose k-th row vector is the 7,-th row vector of the
nXp data matrix X. Similarly the pXd matrix ¥, the dXp matrix X and the dXd matrix

Y] are defined. Assume that X 7 is nonsingular. Define

Ea Y] - X] XI_

T _ 1

Y;. (2)
The matrix E, is assumed to be invertible, and we define the transformation response
vectors as w;{(a)= Ec,—l y, for 1< /< »n and [ €a We apply univariate LTS
regression on each coordinate of w;(a) with the explanatory variables x; and the resulting

estimate is denoted by ,1\"‘,. Finally the estimate E,, of B is obtained by re-transforming

~

I', by the matrix E, as
B, =T, E, . 3)
Since the estimate ﬁa depends on the choice of E, it is essential to find the optimal

subset index @ based on some criterion. It has been dealt with in multivariate estimation
problems by Chakraborty and Chaudhuri (1998), Chakraborty (1999). Depending on the nature
of problems, there exist various criterions in describing the optimality. They used the criterion
to minimize the generalized variance of the multivariate location or regression estimate.

However, the asymptotic generalized variance of the estimate of 2\3,, depends on E, and it

has a rather complex form. Thus it is nearly useless in general situations to calculate the
generalized variance of some estimators.

One serious drawback of coordinatewise extension of univariate regression estimates in
multivariate regression model is that such extensions do not take into account the
inter-dependence that exists among the components of the response vector. It is a motive to

. -1 L
suggest MLTS estimator. On the transformed data set { x;, E, = ¥;} the multivariate
regression model (1) can be rewritten as

w(a) = E, ' B"™+ e, (4)

where e, = E, ! e; In model (4) we will get the coordinatewise LTS estimate /1\",,.

~

To overcome the drawback of coordinatewise estimate I', the covariance matrix of e;

*

should be as orthogonal as possible in the d-dimensional vector space, that is

[ cov( e7)] != EaT st E,=AI Hence we select a for which

trace( E,” X' E,)
| E,- 7V EY

®)
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is minimized. Note that the above minimization problem (5) is equivalent to minimizing the
ratio of the arithmetic and the geometric means of the eigenvalues of the matrix

E,” 7' E, Also it is the same criterion as Chakraborty (1999).

Let B] = X]—l

Y, Then B; is the exact estimate of the regression model (1) based
on the data set {( x,, ¥;),k=1,...,p}. The estimate B; will be appropriate if the

residuals on whole data set are small. We adopt the concept of LTS regression for searching

the optimal index set [ from all possible subsets of size p of {1,...,#n} as
. T ~ 1 T
argmin, Zl[( yi— B x)T2 (y— B; x)len (6)
where @ ;., denotes the ¢-th order statistic from a set of a,;, ¢=1,..., n. Here the value of

h is called coverage. When %= #, the criterion (6) becomes the same as that of LS estimate.

Algorithm

(i) Obtain an affine equivariant and high breakdown estimate 3 of the scale matrix I of
error vector e; from {( x;, y; )}.

(ii) Choose I" to satisfy (6). Given I', find J* to minimize (5). Set «* =I" UJ".

(iii) Compute E , and transform response vector y,to w/= E, y;.

(iv) Obtain the coordinatewise LTS estimate ’I\’a- on {( x;, w;))}. Then MLTS estimate

—

—~ -~ T
Byy7s becomes B, = I', E_ .

~ 12

Note that while the transformed response vector X y in multivariate model (1) is a
popular approach (Zellner, 1962), the transformation does not provide an affine equivalent
modification of coordinatewise LTS estimate. The limitation of such an approach lies in the
point that there does not exist an affine equivariant square root of usual estimates of the

matrix X (Chakraborty, 1999).
We need an appropriate estimate of X to choose the optimal a* satisfying (5) and (6). Here

the estimate E‘ should be affine equivariant and high breakdown for the statistical properties
of MLTS estimator.

3. Properties of MLTS

In view of the definition of B, in (3), we have the following result, which asserts that the

MLTS estimate is affine equivariant.
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Proposition 1 Let E,,( X, Y) be the estimate satisfying (3) on the data set ( X, Y).

The estimator B, satisfies three version of equivariance in multivariate regression

estimator (Rousseeuw et al., 2001).

(a) regression equivariance
B,(X,XA+Y) = B,(X,Y)+ A
(b) y-dffine equivariance
B,(X,YU) = B,(X,Y)U
(c) x-dffine equivariance

1

BAXV,Y)=V ' 'BJ(X,Y)

for all nonsingular dXd matrices U, pXp matrices V and pXd matrices A.

Proof We will prove (b) only. Other properties can be proved in a similar manner. For 3y
. . . . . T
-affine equivariance, the i-th observation y; is transformed to U y, Then Y, and

Y, are transformed to ¥Y; U and Y; U, respectively. It means that FE, defined in (2)

T . . .
becomes U E, The transformed response vector w,;(a) remains invariant under a

non-singular linear transformation of y, because ( U’ E,) ! u’ V= E,,_1 vy, . Thus

~

the estimated matrix of regression parameters I', obtained by regressing each coordinate of

w;(a) on x; using LTS estimate separately is invariant under that transformation.

Therefore B, is transformed to /I\"a E,,T U. It completes the proof Il

The coordinatewise LTS estimator is not y-affine equivariant and also it does not reflect the
interrelationship among variables of error vectors. On the contrary the MLTS estimator is
affine equivariant and it considers the correlations. The estimator MLTS satisfying (1)

includes the scale matrix %, which is usually unknown. For affine equivariance of MLTS
estimator the estimate /2\.‘ should be affine equivariant.

Let us consider the global robustness of MLTS estimator. As a measure it is the
finite-sample version of breakdown point, introduced by Donoho and Huber (1983). The

breakdown point of an estimator 7(Z) at a sample Z is defined as
e T)= min{—’:f;supll T(Z)— T(Z )l|=}

where Z is obtained by replacing m observations by arbitrary points. Roughly speaking, the
breakdown point is the smallest fraction of the contaminated data to make the estimate
meaningless. When the sample size is #, the breakdown point of LS estimate is 1/#. So the
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asymptotic breakdown point of LS estimate is 0.
It is apparent that the robustness of the MLTS estimate will critically depend on the

robustness of the estimate X used in its construction which could be seen in Section 2. The
following proposition describes the breakdown property of MLTS estimate.

Proposition 2 Let Z=( X, Y ) be a set of n=p+d observations and > of the scale
parameter 3 with € X )= [ny] /n where y=(n—h)/n<(n—(p+d—1))/(2n). Assume
also that observations are in general position. Then the finite sample breakdown point of

MLTS estimate in regression model (1) satisfies &5( B uLts )= | nyl /n. Consequently its
asymptotic breakdown point is 50%.

Proof Let Z be a data set obtained by replacing m < [ #y] points from the original data
set Z by arbitrary values. The estimate Tis a high breakdown estimate like the minimum
covariance determinant estimate (Rousseeuw and Leroy, 1987). The index set «® does not
break, because #)p+d and m is no more than [#/2]. Thus E , will remain bounded.

Furthermore each coordinatewise LTS estimate has breakdown point ([(n—p)/2]1+1)/n.
Therefore min( [ ny] /#n, ([ (n—p)/2]1+1)/n)= [ ny] /n completes the proof. I

4. Simulation and Example

To investigate the performance of MLTS estimate in finite sample situations, we conducted a
simulation study and analyzed a real data set for which there are some appropriate

multi-response linear models.
4.1 Simulation

Simulation is conducted to compare the efficiency of the proposed MLTS estimate with
coordinatewise LTS estimate. We consider the following multivariate regression model

y;= B’ x;+ e; , where e;s are generated from bivariate normal distribution, bivariate

Laplace distribution and bivariate ¢ distribution with degrees of freedom 3 with the covariance

matrix Z=<(1) ‘1)) Here the length of y; and x; are all two, the first element of x; is

all one and the second element of x; is generated from the standard univariate normal
distribution. Using these e;, x; and B = 0 , we have generated the observations

( x;, y;) for i=1, ..., n The efficiencies are computed using the fourth root of the ratio

of the generalized variances of two competing estimates (Bickel, 1964) and the generalized
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variance is estimated using 1000 Monte Carlo replications. Here we obtained MLTS estimate
with 2=[(3n)/4].

To illustrate the performance of MLTS estimate in the presence of correlation among
response variables we simulate using the previous framework with sample size # =20 and
30. The efficiencies of MLTS estimate and coordinatewise LTS estimate are summarized in
Table 1. It shows that the efficiency of MLTS estimate increases as correlation among
coordinates of response vector increases. Thus we should consider the covariance matrix of
error vector when we will obtain an estimate of regression coefficients in  multivariate
regression model. Table 1 shows that MLTS estimate appears to be more efficient than
coordinatewise LTS estimate in regardless of error distributions.

4.2 Numerical example

A numerical example is given to illustrate the effectiveness of MLTS estimate. The data
consist of 62 measurements of four pulp fibre characteristics (arithmetic fibre length, long
fibre fraction, fines fibre fraction, zero span tensile) and the four paper properties (breaking
length, elastic modulus, stress at failure, burst strength). The aim of analyzing the pulp fibre
data is to predict four paper properties ( d=4) from four fibre characteristics ( p=5). See
Lee (1992) and Rousseeuw et al. (2001) for detail.

Table 1. Estimated efficiencies of MLTS estimates with respect to coordinatewise
LTS estimates when error distribution comes from bivariate normal, bivariate

Laplace and bivariate ¢ with degrees of freedom 3.

0
Error distribution Sample size
0.2 05 0.7 0.8 0.95

20 103% 114% 124% 149% 198%
Normal

30 105% 114% 137% 147% 198%

20 103% 108% 135% 148% 212%
Laplace

30 110% 114% 134% 146% 210%

20 106% 111% 141%% 152% 198%

¢
30 107% 116%% 133% 149% 211%
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First we applied classical multivariate regression to this data. Figure 1 represents the results
of classical analysis, which depicts the Mahalanobis distances of residuals versus the

T

. . - . . xS —1
Mahalanobis distances of predictors. The value of y-axis is \/ 7ils Xis 7 ;1s Where

~ T
riis= ¥i— Bis x; and 3> Ls denotes the sample covariance matrix of LS residuals.

_ ”~~ -'1 - — ~~
The value of x-axis is \/( xi— x)7 2, ( x;— x) where x and 2, are the sample
mean and sample covariance of x; respectively. This plot gives the information about
regression outliers ( y-axis) and leverage points ( x-axis). The horizontal and vertical cut off

lines are all V ¥ 4.0.915=3.34. From Figure 1 we observe that observations 60, 61 are

leverage points and observations 51, 52, 56 are regression outliers.
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Mahalanobis distances of predictors

Figure 1. Plot of Mahalanobis distances of LS residuals versus Mahalanobis

distances of predictors.
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Figure 2. A diagnostic plot of robust distances of residuals versus robust

distances of predictors.

Next we performed MLTS estimate with %2=46. Figure 2 depicts a diagnostic plot of robust

distances of residuals versus robust distances of predictors (Rousseeuw and Zomeren, 1990). In

. . . . T ~u—1
this  figure the value of y-axis  is \/ rimrs 2 Yimers ,  Wwhere
— T . . —~~ e | —~
rimrs= ¥i— Byrs x; and that of x-axis is ‘[( xi— 1)) T (xi— p),

—~~ ~~
where L, and Y . are the minimum covariance determinant estimates of mean vector

and covariance matrix for the data matrix X, respectively. And the horizontal and vertical
cutoff lines are the same as that of Figure 1. Figure 2 shows that observations 51, 52, 56, 59,
60, 61, 62 are regression outliers and observations 59, 60, 61, 62 are leverage points. We may
conclude that observations 51, 52, 56, 59, 60, 61, 62 are bad points, because they are separated
from others. By the report on collecting data, all except observations 59-61 were produced
from fir wood. Moreover, outlying observations were obtained using different pulping process.
For example observations 62 is the only sample from a chemi-thermomechanical pulping
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process and observations 60, 61 are the only samples from a solvent pulping process. Finally
observations 51, 52, 56 are obtained from a kraft pulping process (Rousseeuw, et al, 2001 ;
Lee, 1992). Figure 2 explains well the history of the pulp fibre data set. However, classical
multivariate regression only detected observations 51, 52, 56 of these outliers and considered
observations 60, 61 to be good leverage points. It shows that MLTS estimate provides the
useful information on detecting outliers in a multivariate regression problem.
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