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A Robust Estimator in Multivariate
Regression Using Least Quartile Difference
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Abstract

We propose an equivariant and robust estimator in multivariate regression model
based on the least quartile difference (LQD) estimator in univariate regression. We
call this estimator as the multivariate least quartile difference (MLQD) estimator. The
MLQD estimator considers correlations among response variables and it can be shown
that the proposed estimator has the appropriate equivariance properties defined in
multivariate regressions. The MLQD estimator has high breakdown point as does the
univariate LQD estimator. We develop an algorithm for MLQD estimate. Simulations
are performed to compare the efficiencies of MLQD estimate with coordinatewise LQD
estimate and the multivariate least trimmed squares estimate.

Keywords . Breakdown point; Equivariance; Least quartile difference estimator; Multivariate
regression; Outliers.

1. Introduction

Consider the linear regression model given by
vi= B x;+e, I1<i<n
where B is the p-dimensional parameter including the intercept. The residuals are denoted by

r( ’B) = y,— ’BT x; The least squares (LS) estimator which minimizes the sum of the

squared residuals is most well known, because it is simple and has the closed form solution
to a certain system of linear equations. Under the assumption of normality of random errors
the LS estimator is optimal. However, LS estimator is very sensitive to outliers. In fact even
a single outlier may destroy LS estimate. Many alternative methods in univariate linear
regression models have been proposed. M, GM estimators are commonly used, but the
breakdown points of these estimators cannot exceed the inverse of the dimension of
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explanatory variables space. The least median of squares (LMS) and least trimmed squares
(LTS) estimators (Rousseeuw and Leroy, 1987) have 50% breakdown point, but a low
asymptotic efficiency. Croux et al. (1994) proposed the least quartile difference (LQD)
estimator, which minimizes the lower quartile of the ordered absolute differences in residual

o)

where h,=[(n+p+1)/2], p is the number of regression parameters, and the notation

pairs, that is,

B rop= argmin 8 {lr;— 7’j|§ i<j}

h h
(2” ) : (g) means minimize the (2’ )th order statistic among (g ) elements of the set

{lr;—7}; i<j}. The LQD estimator has a 50% breakdown point and is asymptotically

normal with Gaussian efficiency of 67%, whereas LMS has asymptotic efficiency of 0% and
LTS has asymptotic efficiency of only 8%. A vast amount of literature has treated robust
estimators in univariate linear regressions.

In multivariate regression model Rao (1988) used univariate least absolute deviation
regression separately for each response. Chakraborty (1999) suggested a new extension of
least absolute deviation regression based on the so-called transformation and retransformation
method. Also Ollila et al. (2002) proposed robust multivariate regression estimators based on
robust estimation of the joint location vector and scatter matrix of the explanatory and
response variables. Jung (2003) proposed the multivariate LTS (MLTS) estimator based on
LTS. As pointed in the previous paragraph, the LTS estimator has a low asymptotic
efficiency when the errors are generated from a univariate normal distribution, and so does
the MLTS estimator.

In this paper we propose an affine and robust estimator of regression parameters in
multivariate linear regression model. This estimator is based on the LQD estimator in
univariate regression model, which is a most high breakdown estimator and high efficient
rather than LMS and LTS. Even though LS estimator is not robust, it is affine equivariant
under nonsingular linear transformations of the response variables. The lack of this property
makes estimator practically meaningless when the values of regression variables are measured
in. different scales. The use of univariate regression estimator for each coordinate of the
response vector, for example Rao (1988), does not take into account of correlations among
response variables. It is called a coordinatewise estimator. Moreover such an approach in
multivariate linear regression models does not assure the affine equivariance. The estimator
proposed in Section 2 adopts transformation and retransformation approach (Chakraborty, 1999)
for regression equivariance and it also uses a covariance matrix of error vectors. The
proposed estimator has 50% breakdown point, because it inherits the breakdown point of LQD.

In Section 2 we define a multivariate regression model and propose a new estimator. We
call this estimator as the multivariate least quartile difference (MLQD) estimator. We develop
an algorithm to compute MLQD estimate. In Section 3 we describe statistical properties of the
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estimator such as breakdown point and affine equivariance in multivariate linear regression
model. In Section 4 simulation is given to illustrate the efficiency of our proposed estimate.
Simulation results show that the MLQD estimate appears to be more efficient than

coordinatewise LQD estimate when there exist correlations among variables of error vector.

2. Multivariate Least Quartile Difference Estimator

Consider the multivariate linear regression model
y= B x;+ e ; i=1,-,n, 1)
where the size of response vector ¥; is d, the length of regressor x;is p, B is a pxd
matrix of unknown coefficient parameters, and e;'s are random errors uncorrelated with x;
The first element of x; is one, so the number of regressor variables is (p—1). The e;’s
are independent and identically distributed. Assume that cov( e;)=2 is nonsingular.
Consider # data points ( x; %), ( %2, ¥3),,( x,, ¥,), and assume that z>d+p.
Wﬁte a = {i, iy, ", 4y 71, , 75 and let W(a) be the pxp matrix whose k-th column
vector is x; , and Z(a) be the dxp matrix whose k-th column vector is ¥, . We will

assume that W{(e) is invertible and define E(a) to be the dxd matrix consisting of the
columns

Y;,— Z(e) Wa) "t xj,, y;,— Z(a) Wa) ™! x;,. (2)

If the error vectors e;s are iid. random vectors with a common probability distribution,
which is absolutely continuous with respect to the Lebesgue measure on R d, the matrix
E(a) will be invertible with probability one. We define the transformation response vectors
as w(a)= E(a) 'y, for 1 < /< n and [ €a. We apply univariate LQD regression
on each coordinate of w;(a) with the explanatory variables x; and the resulting estimate

is denoted by T'(@). Finally the estimate B (a)of B is obtained by re-transforming
T(a) by the matrix E(a) as
B(a) =T (a) E(@", 3)
Since the estimate B (@) depends on the choice of E(a), it is essential to find the

optimal subset index a* based on some criterion. It has been dealt with in multivariate
estimation problems by Chakraborty (1999). Depending on the nature of problems, there exist
various criterions in describing the optimality. They used the criterion to minimize the
generalized variance of the multivariate location or regression estimate. However, the
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asymptotic generalized variance of the estimate of B( @) depends on E(a@) and it has a
rather complex form. Thus it is nearly useless in general situations to calculate the
generalized variance of some estimators.

One serious drawback of coordinatewise extension of univariate regression estimates in
multivariate regression model is that such extensions do not take into account the
inter-dependence that exists among the components of the response vector. It is a motive to

suggest the MLQD estimator. On the transformed data set { x;, E(a) "' y,} the

multivariate regression model (1) can be rewritten as
wi(a) = E(a)_l BT+ e,-*, (4)
where e,-’k = E(a) -1 e; In model (4) we will get the coordinatewise LQD estimate

7’( @) To overcome the drawback of coordinatewise estimate T’( @) the covariance matrix

of ei‘ should be as orthogonal as possible in the d-dimensional vector space, that is
[ cov( €] '= E(a)” 3 ' E(a)=A1 Hence we select @ for which

trace( E(a)” 27" E(a))

| E(@" 27" E(a)| Y
is minimized. Note that the above minimization problem (5) is equivalent to minimizing the
ratio of the arithmetic and the geometric means of the eigenvalues of the matrix

E(e)T 2 V' E(a). Also it is the same criterion as Chakraborty (1999).
Let B; = X; ' Y, Then By is the exact estimate of the regression model (1) based

®)

on the data set {( x,, y,),k=1,-,p}. The estimate B; will be appropriate if the

residuals on whole data set are small. We adopt the concept of LMS regression for searching
the optimal index set I from all possible subsets of size p of {1, -, #n} as

. T <~ T
argmin,[( ¥,— B, x)"2 (3~ B; x)l,., ©®)
where a ; ., denotes the i-th order statistic from a set of a;, i=1, -, n. Here the value of

h is called coverage.

Algorithm

(i) Obtain an affine equivariant and high breakdown estimate 3 of the scale matrix X of
error vector e; from {( x;, v; )}.

(i) Choose I' to satisfy (6). Given I', find J* to minimize (5). Set a*= I"'UJ".

(i) Compute E( @*) and transform response vector y;to w;,= E(a") y, .

(iv) Obtain the coordinatewise LQD estimate I'( @*) on {( x,;, w;)}. Then MLQD estimate
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B uLgp becomes T(a") E(2% T

—~ -

. 1/2 . . . .
Note that while the transformed response vector X y in multivariate model (1) is a
popular approach, the transformation does not provide an affine equivalent modification of
coordinatewise LQD estimate. The limitation of such an approach lies in the point that there

does not exist an affine equivariant square root of usual estimates of the matrix X
(Chakraborty, 1999).

We need an appropriate estimate of X to choose the optimal @" satisfying (5). Here the

estimate % should be affine equivariant and high breakdown for the statistical properties of
MLQD estimator,

3. Properties of MLQD

In view of the definition of B, in (3), we have the following result, which asserts that

the MLQD estimate is affine equivariant. See Jung (2003) for proof.

Proposition 1 Let B(a) be the estimate satisfying (3) on the data set

( x, ¥y).0 x5, »,),,( x,,, ¥,). The estimator B( a) satisfies

(a) dffine equivariance : Suppose that A is a dxd nonsigular matrix. Then the estimator

based on ( %;, A v),( x5, A ¥5),,(x,, A y,) is givenby A B a)

(b) regression equivariance @ Suppose that the response vectors, ¥,’s, are transformed to
v,— G x; for i=1,-,n, where G is a fixed dxp matrix. Then the estimator will be

transformed to ’1\3( a)r G

The coordinatewise LQD estimator is not —affine equivariant and also it does not reflect the
interrelationship among variables of error vectors. On the contrary the MLQD estimator is
affine equivariant and it considers the correlations. The estimator MLQD satisfying (1)

includes the scale matrix X, which is usually unknown. For affine equivariance of MLQD
estimator the estimate 3 should be affine equivariant.

Let us consider the global robustness of MLQD estimator. As a measure it is the
finite-sample version of breakdown point, introduced by Donoho and Huber (1983). The

breakdown point of an estimator 7T (Z) at a sample Z is defined as
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ex( T) = min {Z;supll T(Z)— T(Z )l =}

where Z is obtained by replacing m observations by arbitrary points. Roughly speaking, the
breakdown point is the smallest fraction of the contaminated data to make the estimate

meaningless. When the sample size is #, the breakdown point of LS estimate is 1/#. So the
asymptotic breakdown point of LS estimate is 0.
It is apparent that the robustness of the MLQD estimate will critically depend on the

robustness of the estimate X used in its construction which could be seen in Section 2. The
following proposition describes the breakdown property of MLQD estimate.

Proposition 2 Let Z=( X, Y ) be a set of n=p+ d observations and PX of the scale
parameter Y with &( )= 1nyl/n where y=(n—h)n<(n—(p+d—1))/(2n).
Assume also that observations are in general position. Then the finite sample breakdown
point of MLQD estimate in regression model (1) satisfies &,( B urop )= [ nrl/n
Consequently its asymptotic breakdown point is 50%.

Proof Let Z be a data set obtained by replacing m < [ »y] points from the original data
set Z by arbitrary values. The estimate Tis a high breakdown estimate like the minimum
covariance determinant estimate (Rousseeuw and Leroy, 1987). The index set «" does not

break, because #>p+ d and m is no more than [#/2]. Thus E( ") will remain bounded.
Furthermore each LQD estimate for the component of the response vector has breakdown

point ([(n—2)/2]1+1)/n (Croux et al. (1994)) where h,=[(n+p+1)/2]. Therefore
min( [ #ny] /n,([(n—0)/2]1+1)/n)= [ ny] /n completes the proof.

4. Simulation

To investigate the performance of the MLQD estimate in finite sample situations, we
conducted a simulation study. Simulation is conducted to compare the efficiency of the
proposed MLQD estimate with coordinatewise LQD estimate. We consider the following

multivariate regression model y;,= B T x;+ e; , where e;'s are generated from bivariate

normal distribution, bivariate Laplace distribution and bivariate ¢ distribution with degrees of

freedom 3 with the covariance matrix X= (z f) Here the length of y; and x; are all

two, the first element of x; is all one and the second element of x; is generated from the

standard univariate normal distribution. Using these e;, x; and B = O , we have
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generated the observations ( x;, ¥;) for ¢=1, -, n. The proposed MLQD estimates are

compared with the LS estimates, the MLTS estimate (Jung, 2003) and the coordinatewise
LQD estimate, and for the purpose of efficiency computation, the estimates of their generalized
variances were obtained based on 1000 Monte Carlo veplications. The relative efficiencies are
taken to be the fourth root of the ratio of the generalized variances of two competing

estimates of B (Bickel, 1964).

To illustrate the performance of the MLQD estimate in the presence of correlation among
response variables we simulate using the previous framework with sample size » = 20, 30,40
and 50. For #=40 and 50 we obtained results similar to the case # =20 and 30. For
the latter the efficiencies of the MLQD estimates and the coordinatewise LQD estimates are
summarized in Table 1. It shows that the efficiency of the MLQD estimate increases as
correlation among coordinates of response vector increases. Thus we should consider the
covariance matrix of error vector when we will obtain an estimate of regression coefficients in
multivariate regression model. On this point the MLQD estimator considers the covariance
matrix of error vectors. Table 1 shows that the MLQD estimate appears to be more efficient
than the coordinatewise LQD estimate in the presence of substantial correlations in regardless
of error distributions.

In order to compare the efficiencies of the MLQD estimates and the MLTS estimates, we
performed the simulations using the same framework with the previous work. Table 2
presents the efficiencies of the MLQD estimates and the MLTS estimates. We observe that
the MLQD estimates are more efficient than the MLTS estimates when the errors are
generated from the multivariate normal. When the tail probabilities are larger, the efficiencies

of two estimates are similar. However, we see that the MLQD estimate is more efficient than
the MLTS estimate.

Table 1. Estimated efficiencies of the MLQD estimates with respect to the
coordinatewise LQD estimates when error distribution comes from bivariate

normal, bivariate Laplace and bivariate { with degrees of freedom 3.

Error distribution | Sample size g
0.0 05 09
20 0.98 1.04 1.40
Normal 30 0.98 1.07 137
Laplace 20 0.96 0.97 1.33
30 0.96 1.04 141
4 20 0.93 0.93 1.45
30 0.96 1.04 1.48
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Table 2. Estimated efficiencies of the MLQD estimates with respect to the MLTS
estimates when error distribution comes from bivariate normal, bivariate Laplace

and bivariate ¢ with degrees of freedom 3.

Error distribution | Sample size d :

00 05 09
20 1.27 1.22 1.27

Normal
30 1.45 1.46 143
20 1.15 1.03 1.18

Laplace
30 1.04 1.12 1.07
20 1.15 1.11 1.13

t

30 0.99 0.98 1.03
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