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Bayesian Estimation for the Multiple Regression with
Censored Data : Mutivariate Normal Error Terms !

Yong Hwa Yoon 2

Abstract

This paper considers a linear regression model with censored data where
each error term follows a multivariate normal distribution. In this paper we
consider the diffuse prior distribution for parameters of the linear regression
model. With censored data we derive the full conditional densities for param-
eters of a multiple regression model in order to obtain the marginal posterior
densities of the relevant parameters through the Gibbs Sampler, which was pro-
posed by Geman and Geman(1984) and utilized by Gelfand and Smith(1990)
with statistical viewpoint.
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1. Introduction

Censored data often result from life testing and reaction time experiments where
it is a common practice to terminate observation prior to failure or reaction of all
sample specimens, and problems requiring regression analysis of censored data arise
frequently in practice. Maddala(1983) showed some examples of censored regression
in econometrics field, including a labor-supply model for the reservation wage and
the market wage.

Schmee and Hahn(1979) proposed an iterative least squares(ILS) method for
parameter estimation in linear models with right-censored normally distributed re-
sponse variables. They obtained an initial least squares fit by treating the censored
values as failure times. Then, based upon this initial fit, the expected failure time
for each censored observation is estimated. These estimates are used in order to
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obtain an updated least squares fit, and new expected failure times are estimated
for the censored values.

Aitkin(1981) proposed an EM algorithm for the point estimation of the censored
regression based on Schmee and Hahn(1979)’s result. He considered the multiple
regression model with right-censored data. Wei and Tanner(1990) applied the data
augmentation algorithm in case of simple regression with right-censored data. The
algorithm generates or imputes the latent data from the predictive distribution,
conditional on the fact the failure time must be larger than the observed event
time. They obtain the joint posterior density function based on the augmented data
sets, and update the process until the joint posterior density function seems to be
stabilized.

We will derive the full conditional densities for parameters of a multiple regression
model with censored data, where each error term follows a multivariate normal
distribution, by using the Gibbs Sampler.

2. Model
We consider the following regression model:
y=XB+¢ (1)

where X is n x k matrix with rank k and z;; = 1,4 =1,2,---,n, 8 = (81, -, Fk), €
is n x 1 error vector and € ~ N,(0,0%I,), I, = n x n identity matrix. Note that G
is an unknown intercept and 3o, - - -, Bx are kK — 1 unknown coeflicients. Also we may
reorder the data so that the first m observations are uncensored and the remaining
n—m are censored. Let c; denote the censoring time for the case 5, j =m+1,---,n
and Z; be the unobserved failure time for j. We assume that the unobserved falure
time Z; is greater than c;.
The likelihood function p(y|g, 0?) is given by

PYIBoY) x e~y - XB(y - XB) 2)
o ep{~sylvs + (8- BYXX(E- D))

where v =n — k, E = (X'X) X'y, and vs? = (y — Xé)’(y - X@)
Our diffuse prior pdf for the elements of 3 and o2 is given by

1
p(_@,az)oc?,—oo<ﬂi<oo,i=1,2,---,k, 0 < o? < 0. (3)
Then the joint posterior pdf for the parameters is
1 1
p(B,0’ly) o {55 (v — XB)'(y - XB)} (4)

x g exp{—5 s’ + (8- BYXX(E- DI}
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3. Bayesian Estimation

To apply the Gibbs sampler to the regression model with censored data, we need
the following full conditional distributions for unknown quantities including regres-
sion coefficients 31, 82, - - -, Bk, common variance o2 and the unobserved observatiors
Zm+1-; Tt Zn.

The required full conditional distributions are

p(BilB=i, %, y),

where B; = (B1, -+, Bi-1, 841, Bk), 1 =1,2,-- -k,
p(aQI_ﬁ_,y),
P(ZiB, 0% v, Ymy Zisi £ §), j=m+ 1, ,n

where Z; is the unobserved failure time of the the case j. From the joint posterior
density p(g, o?|y), we obtain

o~

p(ﬁlff,y)owxp{~ —~(B-B'XX(E~ D)} (%)

That is, the conditional distribution of 3 given o? is the multivariate normal distri-
bution Nk@, 03(X'X)™1), where E = (X'X)"1X'y.

To obtain the full conditional distribution for 3;, we reorder the data so that the
i-th column vector x; of matrix X corresponding to 3; is the first column of matrix

X. Then the full conditional density of 3; of interest can be obtained as that of 3,
based on the reordered data set as follows. For the convenience, let 3, = B_,

£ = [gﬂ Ef 5] 6)
= 5w =l

where X5 is the n x (k—1) matrix obtained by removal of x;. Partitioning B- ,8 and
X'X to correspond to the partitioning of 3, we can write p(,B[a ,Y) as the product,
of two factors.

p(/Bl) ﬁ2102a y)

cexp {~3 10— B+ 225, - B,)p}

xexp {5 2(6, ~ B (Hn — “25 (5, - B,)} U
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From (7),the full conditional distribution of 3 is a normal distribution with

. o2
mean f3; — IZ—S(@_I — fB_,) and variance E; That is,

o2

PBIIB 1, 0",y) ~ N(Bi = hif Hia(B_, — By 3)- ®)

By exchanging the i-th column vector and the first column of the matrix X, we can
sample a value of f3; of interest by using the full conditional distribution for 3; based
on reordered data.

Since p(Bly) can be expressed as follows :

pBly) = [p(8,0%y)do” ©)
o« {ve+(B~BYX'X(B- B},

which is the well known multivariate student ¢ distribution.
Then the full conditional distribution of o2 is given by

P(o?18,¥) ox —5 exp{—o— 3 (v~ BIX'X(y — B)}. (10)

Hence the full conditional distribution of o2 is that of the random variable (y —

XB) (y —XB)x;?%, where x;? is an inverted chi-square random variable with degrees
of freedom n.
The sampling of the latent data Z; from the predictive distribution p(Z;|8, o2, Z;,
i # j) = p(Z;|B, 02,Z; > ¢j), j =m~+1,---,n, where c; is the censoring time of
the case j, can be done similarly as the simple regression case. Let u; = ¢;/0, then

2 9(z) :
p(u;'lﬁ,a,Zj>cj)=T?¢_(cj_05, wj> e, j=m+1,n,
¢ — X . .
where cjp = 1=, x; is the j-th row of X corresponding to the case j. Then Z; =

x; + u}, where u} is generated from a left-truncated standard normal distribution
which is the predictive distribution for Z;.
By using the Rao-Blackwellized density estimators given by Gelfand and Smith
(1990), we obtain the following density estimators p(3;|dg) of marginal density
for f;,

— 17
j=1
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where i =1,2,---,k, 8% = (89,80 )., 8% (t)‘) do = (1, Um
»Cm+1,° ", Cn) and (51], ,(ctj),ajz(t),zf,g_lj, N 7(3) J =1,2,---,J denotes the

j-th Gibbs sequence for the J-th vector of initial values after ¢ 1terat10ns

And the full conditional density for 3; is obtained by exchanging x; and x; of
the previous matrix X and adjusting the values of ,81, h11, Hiz and (8_ ) __1) as
mentioned before. e

The density estimator p(0?|dg) of marginal density for o2 is given by

—— 1
p(02|d0) :7Zp(0'2]_ﬂ_(t);y1;"'yymyzga-l,j) " 7(,2) (12)
i=1
_1 L on n/21-1( 2\~ (n/2+1) A(t)(ﬁ) )¢ ay] ™2
=5 LRI e | == | [40)

where

A = (v5: (t) Xﬂ(t))( _X,B(.t))
YOj = (ylay27'"7y7n’z7(7?+1,j’“.’ 7('::-)7)
,3(.t) _ (:Bﬁ')aﬂg)""’ I(ctj))’ i=12,---,J.

If the number of interations ¢ is large enough, the above density estimators are
regarded as the true marginal densities for 3;’s and 2.

4. Numerical Example

Schmee and Hahn(1979) used the results of temperature accelerated life tests on
electrical insulation in 40 motorettes in order to illustrate the iterative least squares
method. Ten motorettes were tested at each of four temperatures. Testing was
terminated at different times at each temperature, resulting in a total of 17 failed
units and 23 unfailed ones. The model used to analyze the data assumes as follows
: (i) For any temperature, the distribution of time to failure is lognormal. (ii) The
standard deviation ¢ of the lognormal time to failure distribution is constant. (iii)
The mean of the logarithm of the time to failure is a linear function of the reciprocal

z = 1000/(T + 273.2) of the absolute temperature T, i.e., y = B + Baz + €,

; %1 N(0,0?). This is often referred to as the Arrehenius relationship.

To find the effect of censorship, we obtain two sets of data from Schmee and
Hahn(1979)’s data. The first set consists of the first five observations at each level
of the temperarture, this serves to expose the effect of the censored observations
at only one level of x. Table 1 shows the transformed values of 20 observations of
which 5 observations at level 2.3629 (the temperature T is 150°) are censored and
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the censoring rate is 0.25. Based on this data set , the least squares estimate of (3;
, P2) is ( -4.531 , 3.433) by treating the censored obserbations as failure times.

Table 1 Transformed Observations Censored at Only One level
2.0276 2.1589 2.2563 2.3629
2.6107 2.6107 3.2465 3.9066*
2.6107 2.6107 3.4428 3.9066*
2.7024 3.1284 3.5371 3.9066*
2.7024 3.1284 3.5492 3.9066*
2.7024 3.1584 3.5775 3.9066*
* denotes the censored values

The second data set consists of the first 8 observations at each level of the
temperature. Table 2 shows that the transformed values of 32 observations of which
all 8 observations at level 2.3629 (the temperature T is 150°) are censored and one
or three are censored at other levels of temperature. This set serves to expose the
effect of the observations which can be censored at every level of z. In this case the
censoring rate is 15/32 = 0.47. Based on this data set, the least squares estimate of
(B, B2) is ( -5.148 , 3.818 ) by treating the censored obserbations as failure times.

Table 2 Transformed Observations Censored at Every Level
2.0276 2.1589 2.2563 2.3629
2.6107 2.6107 3.2465 3.9066*
2.6107 2.6107 3.4428 3.9066*
2.7024 3.1284 3.5371 3.9066*
2.7024 3.1284 3.5492 3.9066*
2.7024 3.1584 3.5775 3.9066*
2.7226* 3.2253* 3.6866 3.9066*
2.7226* 3.2253* 3.7157 3.9066*
2.7226* 3.2253* 3.7362* 3.9066*

* denotes the censored values

Figure 1 shows the marginal posterior distributions p(3:1|Y") and p(3:|Y") respec-
tively when n=20, where only the observations in the lowest level of the stress can
be censored. The number of sets of initial values is 20, 000.We stop the procedure
by using the stopping method proposed by Kim(1994). The procedure is termi-
nated if the sum of maximum differences of the consecutive density estimates over
subintervals of the support is less than 0.03 .

The mode of p(51|Y) is -5.201 with 30 iterations, which is less than the value
-5.164 obtained by treating the censored observations as missing ones. The mode of
p(B2|Y) is 3.836 with 31 iterations, which is somewhat larger than the value 3.819
obtained by treating the censored observations as missing ones. The point estimates
of (81, B2) by the iterative least squares(ILS) method and EM algorithm are ( -5.545,
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3.999) with 16 iterations and (-5.677, 4.062) with 19 iterations, respectively. The
estimate by EM algorithm has the largest absolute values among the three estimates
and the estimate by the Gibbs sampler is the smallest estimate in absolute value.
Figure 2 shows the marginal posterior distributions p(3:]Y") and p(3;|Y") respectively
when n=32, where the observations in every level of the stress can be censored. TkLe
mode of p(31|Y’) is -4.931 with 37 iterations, which is larger than the value -4.983
obtained by treating the censored observations as missing ones. The mode of p(32|Y")
is 3.789 with 31 iterations, which is larger than the value 3.762 obtained by treating
the censored observations as missing ones. The point estimates of (81, 3:) by the
iterative least squares(ILS) method and EM algorithm are ( -6.257, 4.357) with 23
iterations and (-6.788, 4.605) with 33 iterations, respectively. Similarly in case of
n=20, the estimate by EM algorithm has the largest absolute values among the three
estimates and the estimate by the Gibbs sampler is the smallest estimate in absolute
value.
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Figure 1 p(6:1|Y)(left) and p(5|Y)(right) When n=20
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Figure 2 p(6:1|Y)(left) and p(B:2|Y)(right) When n=32



