• Title/Summary/Keyword: Multipliers

Search Result 456, Processing Time 0.03 seconds

A Design of Low-Error Truncated Booth Multiplier for Low-Power DSP Applications (저전력 디지털 신호처리 응용을 위한 작은 오차를 갖는 절사형 Booth 승산기 설계)

  • 정해현;박종화;신경욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.323-329
    • /
    • 2002
  • This paper describes an efficient error-compensation technique for designing a low-error truncated Booth multiplier which produces an N-bit output from a two's complement multiplication of two N bit inputs by eliminating the N least-significant bits. Applying the proposed method, a truncated Booth multiplier for area-efficient and low-power applications has been designed, and its performance(truncation error, area) was analyzed. Since the truncated Booth multiplier does not have about half the partial product generators and adders, it results an area reduction of about 35%, compared with no-truncated parallel multipliers. Error analysis shows that the proposed approach reduces the average truncation error by approximately 60%, compared with conventional methods. A 16-b$\times$16-b truncated Booth multiplier core is designed on full-custom style using 0.35-${\mu}{\textrm}{m}$ CMOS technology. It has 3,000 transistors on an area of 330-${\mu}{\textrm}{m}$$\times$262-${\mu}{\textrm}{m}$ and 20-㎽ power dissipation at 3.3-V supply with 200-MHz operating frequency.

Design of Efficient FFT Processor for IEEE 802.16e Mobile WiMax Systems (IEEE 802.16e Mobile WiMax 시스템을 위한 효율적인 FFT 프로세서 설계)

  • Park, Youn-Ok;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.97-102
    • /
    • 2010
  • In this paper, an area-efficient FFT processor is proposed for IEEE 802.16e mobile WiMax systems. The proposed scalable FFT processor can support the variable length of 128, 512, 1024 and 2048. By reducing the required number of non-trivial multipliers with mixed-radix (MR) and multi-path delay commutator (MDC) architecture, the complexity of the proposed FFT processor is dramatically decreased without sacrificing system throughput. The proposed FFT processor was designed in hardware description language (HDL) and synthesized to gate-level circuits using 0.18um CMOS standard cell library. With the proposed architecture, the gate count for the processor is 46K and the size of memory is 64Kbits, which are reduced by 16% and 27%, respectively, compared with those of the 4-channel radix-2 MDC (R2MDC) FFT processor.

Design of ECC Scalar Multiplier based on a new Finite Field Division Algorithm (새로운 유한체 나눗셈기를 이용한 타원곡선암호(ECC) 스칼라 곱셈기의 설계)

  • 김의석;정용진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.726-736
    • /
    • 2004
  • In this paper, we proposed a new scalar multiplier structure needed for an elliptic curve cryptosystem(ECC) over the standard basis in GF(2$^{163}$ ). It consists of a bit-serial multiplier and a divider with control logics, and the divider consumes most of the processing time. To speed up the division processing, we developed a new division algorithm based on the extended Euclid algorithm. Dynamic data dependency of the Euclid algorithm has been transformed to static and fixed data flow by a localization technique, to make it independent of the input and field polynomial. Compared to other existing scalar multipliers, the new scalar multiplier requires smaller gate counts with improved processor performance. It has been synthesized using Samsung 0.18 um CMOS technology, and the maximum operating frequency is estimated 250 MHz. The resulting performance is 148 kbps, that is, it takes 1.1 msec to process a 163-bit data frame. We assure that this performance is enough to be used for digital signature, encryption/decryption, and key exchanges in real time environments.

A New Multiplication Algorithm and VLSI Architecture Over $GF(2^m)$ Using Gaussian Normal Basis (가우시안 정규기저를 이용한 $GF(2^m)$상의 새로운 곱셈 알고리즘 및 VLSI 구조)

  • Kwon, Soon-Hak;Kim, Hie-Cheol;Hong, Chun-Pyo;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1297-1308
    • /
    • 2006
  • Multiplications in finite fields are one of the most important arithmetic operations for implementations of elliptic curve cryptographic systems. In this paper, we propose a new multiplication algorithm and VLSI architecture over $GF(2^m)$ using Gaussian normal basis. The proposed algorithm is designed by using a symmetric property of normal elements multiplication and transforming coefficients of normal elements. The proposed multiplication algorithm is applicable to all the five recommended fields $GF(2^m)$ for elliptic curve cryptosystems by NIST and IEEE 1363, where $m\in${163, 233, 283, 409, 571}. A new VLSI architecture based on the proposed multiplication algorithm is faster or requires less hardware resources compared with previously proposed normal basis multipliers over $GF(2^m)$. In addition, we gives an easy method finding a basic multiplication matrix of normal elements.

Design of an Efficient Coarse Frequency Estimator Using a Serial Correlator for DVB-S2 (직렬 상관기를 이용한 디지털 위성방송 주파수 추정회로 설계)

  • Yun, Hyoung-Jin;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.434-439
    • /
    • 2008
  • This paper proposes an efficient coarse frequency synchronizer for digital video broadcasting - second generation (DVB-S2). The input signal requirement of acquisition range for coarse frequency estimator in the DVB-S2 is around ${\pm}1.5625Mhz$, which corresponds to 6.25% of the symbol rate at 25Mbaud. At the process of analyzing the robust algorithm among data-aided approaches, we find that the Luise & Reggiannini (L&R) algorithm is the most promising one for coarse frequency estimation with respect to estimation performance and complexity. However, it requires many multipliers and adders to compute output values of correlators. We propose an efficient architecture identifying the serial correlator with the buffer and multiplexers. The proposed coarse frequency synchronizer can reduce the hardware complexity about 92% of the direct implementation. The proposed architecture has been implemented and verified on the Xilinx Virtex II FPGA.

Efficient Frame Synchronizer Architecture Using Common Autocorrelator for DVB-S2 (공통 자기 상관기를 이용한 효율적인 디지털 위성 방송 프레임 동기부 회로 구조)

  • Choi, Jin-Kyu;SunWoo, Myng-Hoon;Kim, Pan-Soo;Chang, Dae-Ig
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.64-71
    • /
    • 2009
  • This paper presents an efficient frame synchronizer architecture using the common autocorrelator for Digital Video Broadcasting via Satellite, Second generation(DVB-S2). To achieve the satisfactory performance under severe channel conditions and the efficient hardware resource utilization of functional synchronization blocks which have been implemented, we propose a new efficient common autocorrelator structure. The proposed architecture can improve the performance of the frame and frequency synchronizer since each block operates jointly in parallel and significantly reduce the complexity of the frame synchronizer. Hence, The proposed architecture can ensure the decrease by about 92% multipliers and 81% adders compared with the direct implementation. Moreover, it has been thoroughly verified with an FPGA board and R&STM SFU broadcast test equipment and consists of 29,821 LUTs with XilinxTM Virtex IV LX200.

A Reconfigurable Multiplier Architecture Based on Memristor-CMOS Technology (멤리스터-CMOS 기반의 재구성 가능한 곱셈기 구조)

  • Park, Byungsuk;Lee, Sang-Jin;Jang, Young-Jo;Eshraghian, Kamran;Cho, Kyoungrok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.64-71
    • /
    • 2014
  • Multiplier performs a complex arithmetic operation in various signal processing algorithms such as multimedia and communication system. The multiplier also suffers from its relatively large signal propagation delay, high power dissipation, and large area requirement. This paper presents memristor-CMOS based reconfigurable multiplier reducing area occupation of the multiplier circuitry and increasing compatibility using optimized bit-width for various applications. The performance of the memristor-CMOS based reconfigurable multiplier are estimated with memristor SPICE model and 180 nm CMOS process under 1.8 V supply voltage. The circuit shows performance improvement of 61% for area, 38% for delay and 28% for power consumption respectively compared with the conventional reconfigurable multipliers. It also has an advantage for area reduction of 22% against a twin-precision multiplier.

Economic Impact of Andong Maskdance Festival -using Regional Input-Output Model- (안동국제탈춤페스티벌의 경제적 파급효과 분석 -지역산업연관모델을 중심으로-)

  • Lee, Ji-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.371-378
    • /
    • 2011
  • This paper examines the estimate the economic impact of 2008 Andong Maskdance Festival, using an Input-Output(I-O) model. For the research, the Regional Input-Output analysis was used, which makes it easy to grasp the economic impact of the tourism industry and other industries in Andong. Based on the regional I-O transactions tables which were developed by Bank of Korea(2009), the industry multipliers were derived with respect to output, income, and value-added. The results show that in 2008 Andong Maskdance Festival receipts generated output impact of 30,961 million won and 15,800 million won of income impact, 14,310 million won of value-added impact, respectively. I think the result of this study can be used as an objective indicator to help to establish and implement regional festival policies for the local government.

Integer Inverse Transform Structure Based on Matrix for VP9 Decoder (VP9 디코더에 대한 행렬 기반의 정수형 역변환 구조)

  • Lee, Tea-Hee;Hwang, Tae-Ho;Kim, Byung-Soo;Kim, Dong-Sun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.106-114
    • /
    • 2016
  • In this paper, we propose an efficient integer inverse transform structure for vp9 decoder. The proposed structure is a hardware structure which is easy to control and requires less hardware resources, and shares algorithms for realizing entire DCT(Discrete Cosine Transform), ADST(Asymmetric Discrete Sine Transform) and WHT(Walsh-Hadamard Transform) in vp9. The integer inverse transform for vp9 google model has a fast structure, named butterfly structure. The integer inverse transform for google C model, unlike universal fast structure, takes a constant rounding shift operator on each stage and includes an asymmetrical sine transform structure. Thus, the proposed structure approximates matrix coefficient values for all transform mode and is used to matrix operation method. With the proposed structure, shared operations for all inverse transform algorithm modes can be possible with reduced number of multipliers compared to the butterfly structure, which in turn manages the hardware resources more efficiently.

Design of Efficient FFT Processor for MIMO-OFDM Based SDR Systems (MIMO-OFDM 기반 SDR 시스템을 위한 효율적인 FFT 프로세서 설계)

  • Yang, Gi-Jung;Jung, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.87-95
    • /
    • 2009
  • In this paper, an area-efficient FFT processor is proposed for MIMO-OFDM based SDR systems. The proposed scalable FFT processor can support the variable length of 64, 128, 512, 1024 and 2048. By reducing the required number of non-trivial multipliers with mixed-radix (MR) and multi-path delay commutator (MDC) architecture, the complexity of the proposed FFT processor is dramatically decreased without sacrificing system throughput The proposed FFT processor was designed in hardware description language (HDL) and synthesized to gate4eve1 circuits using 0.18um CMOS standard cell library. With the proposed architecture, the gate count for the processor is 46K and the size of memory is 64Kbits, which are reduced by 59% and 39%, respectively, compared with those of the 4-channel radix-2 single-path delay feedback (R2SDF) FFT processor. Also, compared with 4-channel radix-2 MDC (R2MDC) FFT processor, it is confirmed that the gate count and memory size are reduced by 16.4% and 26.8, respectively.