• Title/Summary/Keyword: Multiplication Function

Search Result 145, Processing Time 0.024 seconds

LINC01272 Suppressed Cell Multiplication and Induced Apoptosis Via Regulating MiR-7-5p/CRLS1 Axis in Lung Cancer

  • Ma, Xuan;Liu, Yang;Tian, Hao;Zhang, Bo;Wang, Meiling;Gao, Xia
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.921-932
    • /
    • 2021
  • LINC01272 is a long non-coding RNA (lncRNA) that has been considered as a biomarker for many diseases including lung squamous cell carcinoma. Here, we investigated the function and mechanism of LINC01272 on lung cancer (LC). The differential expression of LINC01272 in LC and normal samples was analyzed by GEPIA based on the data from TCGA-LUAD database, as survival prognosis was analyzed through Kaplan-Meier Plotter. LINC01272 overexpression plasmid and miR-7-5p mimic were transfected into A549 and PC-9 cells. LINC01272, miR-7-5p and cardiolipin synthase 1 (CRLS1) mRNA expression was measured by quantitative reverse transcription-polymerase chain reaction. Cell viability was detected through MTT assay. Cell multiplication was evaluated by cell formation assay. Cell apoptosis was assessed through flow cytometry assay. Through bioinformatics, the target miRNA of LINC01272 and downstream genes of miR-7-5p were predicted. The targeting relationship was tested by dual luciferase reporter analysis. CRLS1, B-cell lymphoma-2 (Bcl-2), BCL2-associated X (Bax) and cleaved caspase-3 protein levels were detected through western blot. LINC01272 was downregulated in LC and low LINC01272 expression had poor prognosis. In A549 and PC-9 cells, LINC01272 inhibited cell viability and multiplication and induced apoptosis. LINC01272 negatively regulated miR-7-5p and CRLS1 was a target of miR-7-5p. MiR-7-5p reversed the effect of LINC01272 on viability, multiplication, apoptosis and expression of miR-7-5p and CRLS1 as well as apoptosis-related factors (Bcl-2, Bax and cleaved caspase-3). LINC01272 suppressed cell multiplication and induced apoptosis via regulating the miR-7-5p/CRLS1 axis in LC.

Computation and Communication Efficient Key Distribution Protocol for Secure Multicast Communication

  • Vijayakumar, P.;Bose, S.;Kannan, A.;Jegatha Deborah, L.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.878-894
    • /
    • 2013
  • Secure multimedia multicast applications involve group communications where group membership requires secured dynamic key generation and updating operations. Such operations usually consume high computation time and therefore designing a key distribution protocol with reduced computation time is necessary for multicast applications. In this paper, we propose a new key distribution protocol that focuses on two aspects. The first one aims at the reduction of computation complexity by performing lesser numbers of multiplication operations using a ternary-tree approach during key updating. Moreover, it aims to optimize the number of multiplication operations by using the existing Karatsuba divide and conquer approach for fast multiplication. The second aspect aims at reducing the amount of information communicated to the group members during the update operations in the key content. The proposed algorithm has been evaluated based on computation and communication complexity and a comparative performance analysis of various key distribution protocols is provided. Moreover, it has been observed that the proposed algorithm reduces the computation and communication time significantly.

1-Dimensional Simulation of the Corona Discharge using Fluid Method (유체법을 이용한 코로나 방전의 1차원 수치해석)

  • 이용신;심재학;고광철;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.172-176
    • /
    • 1997
  • It is likely that the corona discharge appears due to the motion and the multiplication of electron and ion under the nonuniform electric field. Because the motion and the multiplication of electron and ion are the function of electric field, for the simulation of the corona discharge, we have to calculate the electric field, before the calculation of the motion and the multiplication of electron and ion. In this paper, the electric field is calculated on the assumption that the gap between a hyperboloidal needle and a plane is 1-dimension, and the motion and the multiplication of electron and ion are determined by Flux-Corrected Transport method. For this purpose, we solve the electron and ion continuity equation together with Poisson equation. We calculated the current density and the electron and ion density distributions between electrodes as well as electric field distortion due to the space charge assuming that the discharge channel radius is 100${\mu}{\textrm}{m}$. In this simulation, it is found that the current density has one peak as observed by experiment, and electric field distortion is important to the formation and the stability of the corona discharge.

  • PDF

A NONCOMMUTATIVE BUT INTERNAL MULTIPLICATION ON THE BANACH ALGEBRA $A_t$

  • Ryu, Kun-Sik;Skoug, David
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.11-17
    • /
    • 1989
  • In [1], Johnson and Lapidus introduced a family { $A_{t}$ :t>0} of Banach algebras of functionals on Wiener space and showed that for every F in $A_{t}$ , the analytic operator-valued function space integral $K_{\lambda}$$^{t}$ (F) exists for all nonzero complex numbers .lambda. with nonnegative real part. In [2,3] Johnson and Lapidus introduced a noncommtative multiplication having the property that if F.mem. $A_{t}$ $_{1}$ and G.mem. $A_{t}$ $_{2}$ then $F^{*}$G.mem. A$t_{1}$+$_{t}$ $_{2}$ and (Fig.) Note that for F, G in $A_{t}$ , $F^{*}$G is not in $A_{t}$ but rather is in $A_{2t}$ and so the multiplication * is not internal to the Banach algebra $A_{t}$ . In this paper we introduce an internal noncommutative multiplication on $A_{t}$ having the property that for F, G in $A_{t}$ , F G is in $A_{t}$ and (Fig.) for all nonzero .lambda. with nonnegative real part. Thus is an auxiliary binary operator on $A_{t}$ .TEX> .

  • PDF

OVERRINGS OF THE KRONECKER FUNCTION RING Kr(D, *) OF A PRUFER *-MULTIPLICATION DOMAIN D

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1013-1018
    • /
    • 2009
  • Let * be an e.a.b. star operation on an integrally closed domain D, and let $K\gamma$(D, *) be the Kronecker function ring of D. We show that if D is a P*MD, then the mapping $D_{\alpha}{\mapsto}K{\gamma}(D_{\alpha},\;{\upsilon})$ is a bijection from the set {$D_{\alpha}$} of *-linked overrings of D into the set of overrings of $K{\gamma}(D,\;{\upsilon})$. This is a generalization of [5, Proposition 32.19] that if D is a Pr$\ddot{u}$fer domain, then the mapping $D_{\alpha}{\mapsto}K_{\gamma}(D_{\alpha},\;b)$ is a one-to-one mapping from the set {$D_{\alpha}$} of overrings of D onto the set of overrings of $K_{\gamma}$(D, b).

Fractional Integrals and Generalized Olsen Inequalities

  • Gunawan, Hendra;Eridani, Eridani
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • Let $T_{\rho}$ be the generalized fractional integral operator associated to a function ${\rho}:(0,{\infty}){\rightarrow}(0,{\infty})$, as defined in [16]. For a function W on $\mathbb{R}^n$, we shall be interested in the boundedness of the multiplication operator $f{\mapsto}W{\cdot}T_{\rho}f$ on generalized Morrey spaces. Under some assumptions on ${\rho}$, we obtain an inequality for $W{\cdot}T_{\rho}$, which can be viewed as an extension of Olsen's and Kurata-Nishigaki-Sugano's results.

Rapid Calculation of CGH Using the Multiplication of Down-scaled CGH with Shifted Concave Lens Array Function

  • Lee, Chang-Joo;Lee, Seung-Yeol
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.51-59
    • /
    • 2022
  • Holographic display technology is one of the promising 3D display technologies. However, the large amount of computation time required to generate computer-generated holograms (CGH) is a major obstacle to the commercialization of digital hologram. In various systems such as multi-depth head-up-displays with hologram contents, it is important to transmit hologram data in real time. In this paper, we propose a rapid CGH computation method by applying an arraying of a down-scaled hologram with the multiplication of a shifted concave lens function array. Compared to conventional angular spectrum method (ASM) calculation, we achieved about 39 times faster calculation speed for 3840 × 2160 pixel CGH calculation. Through the numerical investigation and experiments, we verified the degradation of reconstructed hologram image quality made by the proposed method is not so much compared to conventional ASM.

THE q-DEFORMED GAMMA FUNCTION AND q-DEFORMED POLYGAMMA FUNCTION

  • Chung, Won Sang;Kim, Taekyun;Mansour, Toufik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1155-1161
    • /
    • 2014
  • In this paper, we rederive the identity ${\Gamma}_q(x){\Gamma}_q(1-x)={\frac{{\pi}_q}{sin_q({\pi}_qx)}$. Then, we give q-analogue of Gauss' multiplication formula and study representation of q-oscillator algebra in terms of the q-factorial polynomials.

REPRODUCING KERNEL KREIN SPACES

  • Yang, Mee-Hyea
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.659-668
    • /
    • 2001
  • Let S(z) be a power series with operator coefficients such that multiplication by S(z) is an everywhere defined transformation in the square summable power series C(z). In this paper we show that there exists a reproducing kernel Krein space which is state space of extended canonical linear system with transfer function S(z). Also we characterize the reproducing kernel function of the state space of a linear system.