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THE q-DEFORMED GAMMA FUNCTION AND

q-DEFORMED POLYGAMMA FUNCTION

Won Sang Chung, Taekyun Kim, and Toufik Mansour

Abstract. In this paper, we rederive the identity Γq(x)Γq(1 − x) =
πq

sinq(πqx)
. Then, we give q-analogue of Gauss’ multiplication formula

and study representation of q-oscillator algebra in terms of the q-factorial
polynomials.

1. Introduction

In the last decades, the q-calculus served as a bridge between mathematics
and physics. The majority of researchers around the world who use q-calculus
are physicists. This field has expanded explosively, due to the fact that the
basic hypergeometric series served several subjects of combinatorics, quantum
theory, number theory, statistical mechanics.

From now on we will restrict our concern to the case that the deformation
parameter q is real and 0 < q < 1. The q-analogue of Gamma function (or
q-deformed Gamma function), a q-analogue of Euler’s gamma function, was
introduced by Thomae [17] and later by Jackson [5, 6] as the infinite product

Γq(x) = (1 − q)1−x
∞
∏

n=0

1− qn+1

1− qn+x
.

Askey [2] pointed out that this function satisfies Γq(x+1) = [x]Γq(x), Γq(1) = 1

and d2

dx2 log Γq(x+1) > 0 for all x ≥ 0, where [x] is a Jackson’s q-number defined

by [x] = [x]q = 1−qx

1−q . Recently, several authors have studied many properties

of q-gamma functions Γq(x) in the area of physics and applied mathematics
(see [1, 3, 8, 7, 9, 10]). In this paper, we are interested on q-deformed Gamma
and polygamma functions. The aim of this paper is to rederive the identity
Γq(x)Γq(1− x) =

πq

sinq(πqx)
. At the end, we give q-analogue of Gauss’ multipli-

cation formula and study representation of q-oscillator algebra in terms of the
q-factorial polynomials.
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2. New properties concerning the q-deformed Gamma function and

q-deformed polygamma function

The q-deformed Gamma function can be rewritten in the following form;

Γq(x) = lim
n→∞

[n]![n]x

[x][x+ 1][x+ 2] · · · [x+ n]
,(1)

where the q-factorial is defined by [n]! = [n][n− 1] · · · [2][1]. For an integer N ,
we have Γq(N) = [N − 1]! The proof is as follows.

Γq(N) = lim
n→∞

[n]![n]N

[N ][N + 1][N + 2] · · · [N + n]

= [N − 1]! lim
n→∞

[n]N

[n+ 1][n+ 2] · · · [n+N ]
= [N − 1]!,

where we used limn→∞[n + k] = 1
1−q . Using (1), we obtain the duplication

formula of the q-deformed Gamma function.

Proposition 2.1. The q-Gamma function obeys

Γq(x)Γq

(

x+
1

2

)

= Γq

(

1

2

)

([2]√q)
1−2xΓ√

q(2x),

where [x]√q =
1−(

√
q)x

1−√
q .

Proof. Using (1), we have

Γq(x)Γq

(

x+
1

2

)

= lim
n→∞

([n]!)2[n]2x+1/2

[x][x + 1] · · · [x+ n][x+ 1/2][x+ 3/2] · · · [x+ n+ 1/2]
.

Using [2x]√q = [2]√q[x], we have

Γq(x)Γq

(

x+
1

2

)

= lim
n→∞

([2]√q)
2n+1([n]!)2([2]√q)

−2x−1([2n]√q)
2x+1/2

[2x]√q[2x+ 1]√q · · · [2x+ 2n]√q[2x+ 2n+ 1]√q

= A([2]√q)
−2xΓ√

q(2x).

Inserting x = 1/2, we derive A = [2]√qΓq

(

1
2

)

, which completes the proof. �

Note that in [10] Mansour has also studied some properties of Γq(x) re-
lated to our Proposition 2.1. In order to compute Γq

(

1
2

)

, let us introduce the
q-deformed exponential function. There exist two different q-deformed expo-
nential functions as follows:

eq(x) =

∞
∑

k=0

xk

[k]!
, Eq(x) =

∞
∑

k=0

qk(k−1)/2xk

[k]!
.

The following relations exist between the two types of the q-deformed expo-
nential functions;

eq(x) = Eq−1(x), eq(−x)Eq(x) = 1.
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For 0 < q < 1, we have eq(−∞) = 0, eq(
1

1−q ) = ∞, Eq(− 1
1−q ) = 0 and

Eq(∞) = ∞. Using the q-deformed exponential functions, we get the well
known integral expression for the q-deformed Gamma function (see [6]):

Γq(n) =

∫ 1
1−q

0

xn−1Eq(−qx)dqx.(2)

Therefore, we can state the following result.

Proposition 2.2. For 0 < q < 1,

Γq

(

1

2

)

=
√

1− qEq

(

q

q − 1

)

eq(q
1/2(1− q)).

Proof. By (2) we have

Γq

(

1

2

)

=

∫ 1
1−q

0

x−1/2Eq(−qx)dqx

=

∞
∑

n=0

qn
(

qn

1− q

)−1/2

Eq(−
qn+1

1− q
)

=
√

1− q

∞
∑

n=0

qn/2(1− qn+1)∞q

=
√

1− q(1− qn+1)∞q

∞
∑

n=0

qn/2

[n]!
(1 − q)n

=
√

1− qEq

(

q

q − 1

)

eq(q
1/2(1− q)),

where (1 + a)∞q is defined as
∏

j≥0(1 + qja) and we used the formula
∑

n≥0

qn/2(1− qn+1)∞q = eq(q
1/2(1− q))(1 − q)∞q .

�

The q-deformed Gamma function can be also expressed in the infinite prod-
uct form:

1

Γq(x)
= [x]

∞
∏

k=1

[

1 +
x

k

]

qk

(

[

1 +
1

k

]

qk

)−x

,(3)

where [x]qk = 1−qkx

1−qk
. Using (3), we have

Γq(x)Γq(1− x) =
1

[x]
∏∞

k=1

[

1 + x
k

]

qk

[

1− x
k

]

qk

.(4)

By inserting x = 1/2, we obtain the q-analogue of Wallis formula:
(

Γq

(

1

2

))2

= [2]√q ·
[2]√q[2]√q

[1]√q[3]√q
·
[4]√q[4]√q

[3]√q[5]√q
·
[6]√q[6]√q

[5]√q[7]√q
· · · .
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If we define the q-deformed sine function as sinq(x) =
1
2i (eq(iz)− eq(−ix)) and

the q-analogue of π, πq, as

sinq(πqx) = πq[x]

∞
∏

k=1

[

1 +
x

k

]

qk

[

1− x

k

]

qk
,

then we have sinq
(πq

2

)

= 1 and sinq(nπq) = 0 for all n ∈ Z. The q-analogue of
Wallis formula implies

Γq

(

1

2

)

=
√
πq.(5)

By (4) and (5) we obtain the following result (see [4]).

Proposition 2.3. We have

Γq(x)Γq(1− x) =
πq

sinq(πqx)
.

Another definition of the q-deformed Gamma function is given by q-analogue
of Weierstrass product formula:

1

Γq(x)
= [x]eγqx

∞
∏

k=1

[

1 +
x

k

]

qk
e−

x
[k] ,

where the q-analogue of the Euler-Mascheroni constant γq is defined by

γq = lim
n→∞

(

1

[1]
+

1

[2]
+ · · ·+ 1

[n]
− ln[n]

)

.

Now, let us extend our work to the q-deformed digamma function and
polygamma function. From (1), we have

ln Γq(x+ 1) = lim
n→∞

(

ln[n]! + x ln[n]−
n
∑

k=1

[x+ k]

)

.

Then the digamma function Fq(x) is defined as follows:

Fq(x) =
d ln Γq(x+ 1)

dx
= −γq +

∞
∑

k=1

(

1

[k]
+
qx+k ln q

1− qx+k

)

.(6)

If we insert x = 0 into (6), we have

Fq(0) = −γq +
∞
∑

k=1

1− q + qk ln q

1− qk
.

It can be easily checked that

lim
q→1

Fq(0) = −γ = −0.577216 · · · .
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Differentiating the q-deformed digamma function repeatedly, we obtain the q-
deformed polygamma function as follows:

F (n)
q (x) =

dn+1 ln Γq(x+ 1)

dxn+1
= (ln q)n+1

∞
∑

k=1

∑n−1
l=1 a

(n)
l ql(x+k)

(1 − qx+k)n+1
,

where a
(n+1)
l = la

(n)
l + (n− l+ 2)a

(n)
l−1, l = 2, 3, . . . , n− 2, and a

(n)
1 = a

(n)
n = 1.

Note that anl is the Eulerian number which is given by anl =
∑l

j=0(−1)j(l −
j)n
(

n+1
j

)

(see [16]).

3. Representation of q-oscillator algebra in terms of the q-factorial

polynomial

In this section, we discuss the representation of a q-oscillator algebra by
introducing q-factorial polynomials which are derived from the q-gamma func-
tion. Let us define the q-factorial polynomial as follows

φn(x) =
Γq(x+ 1)

Γq(x+ 1− n)
=

n−1
∏

j=0

[x− j].

The q-factorial polynomial behaves as ordinary monomials under the action of
the operators â† = xe−∂x and â = q−x−1(e∂x−1), where ∂x = d

dx is an ordinary

derivative. Indeed, â and â† are called step operators when they appear in the
q-deformed quantum theory.

Proposition 3.1. The step operators satisfy â†φn(x) = φn+1(x) and âφn(x) =
q−n[n]φn−1(x).

Proof. Acting â† on φn(x), we have

â†φn(x)= xφn(x− 1)= x
n−1
∏

j=0

[x− (j + 1)]=x
n
∏

j=1

[x− j]=
n
∏

j=0

[x− j]=φn+1(x).

Acting â on φn(x), we have

âφn(x) = q−x−1[φn(x+ 1)− φn(x)] = q−x−1





n−1
∏

j=0

[x− (j − 1)]−
n−1
∏

j=0

[x− j]





= q−x−1



[x+ 1]

n−1
∏

j=1

[x− (j − 1)]− [x− (n− 1)]

n−2
∏

j=0

[x− j]





= q−x−1{[x+ 1]− [x− (n− 1)]}
n−2
∏

j=0

[x− j]

= q−n[n]

n−2
∏

j=0

[x− j] = q−n[n]φn−1(x),
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which completes the proof. �

Moreover, the step operators satisfy the q-oscillator algebra:

ââ† − q−1â†â = q−1.

Acting â†â on the q-factorial polynomial φn(x) yields the difference equation

â†âφn(x) = q−n[n]φn(x),

which can be written as

(q−n[n] + xq−x)φn(x) = xq−xφn(x− 1).

Now let us investigate the eigenfunction and eigenvalue of the position oper-
ator defined by X̂ = â+â†. If we denote the eigenfunction and eigenvalue of the
position operator by ψ(x) and x, respectively, then we have X̂ψ(x) = xψ(x) or

[xe−∂x + q−x−1(e∂x − 1)]ψ(x) = xψ(x).(7)

Then, (7) can be rewritten as

ψ(x+ 1)− ψ(x) = xqx+1(ψ(x) − ψ(x − 1)).

If we set g(x) = ψ(x)−ψ(x−1), we have g(x+1) = xqx+1g(x). The transform
g(x) = qx(x+1)/2h(x) gives h(x+1) = xh(x). Hence, h(x) =

∏∞
j=1(x−j). Then

the eigenfunction of the position operator satisfies the following recurrence
relation

ψ(x) − ψ(x− 1) = qx(x+1)/2
∞
∏

j=1

(x− j).(8)

The solution of (8) is given by

ψ(x) =

∞
∑

n=0

q−(n−1)x+
(n−1)(n−2)

2

∞
∏

k=n

(x− k).
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