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DUAL QUATERNIONIC REGULAR FUNCTION OF DUAL
QUATERNION VARIABLES

Ji Eun Kim a and Kwang Ho Shon b, ∗

Abstract. We give representations of differential operators and rules for addition
and multiplication of dual quaternions. Also, we research the notions and properties
of a regular function and a corresponding harmonic function with values in dual
quaternions of Clifford analysis.

1. Introduction

Quaternions have been developed by Hamilton’s the discovery and studies. Hamil-
ton [6] extended the theory of functions of a quaternion variable by using the theory
of functions of several real variables. Tait [17] and Joly [7] developed a special class of
regular functions which had quaternion-valued functions of a quaternion variable. In
1935, Fueter [4, 5] studied the definition of regularity for quaternionic functions from
an analogue of the Cauchy-Riemann equations, Cauchy theorem and Cauchy inte-
gral formula. Based Fueter’s results of the theory of quaternionic analysis, Deavours
[2] gave the simpler fundamentals of quaternionic analysis. Sudbery [16] researched
the notation and algebraic properties of quaternions and proposed the power series
representing a regular function in the algebra of quaternions. Kajiwara et al. [8, 9]
applied the theory on a Hilbert space and brconvex domains and studied an inhomo-
geneous Cauchy-Riemann system in quaternion analysis. Kim et al. [10, 11, 12, 13]
researched properties of functions with values in special quaternions such as reduced
quaternion and split quaternions by using each a corresponding Cauchy-Riemann
system. They [14, 15] also investigated properties of the differential operators and
regular functions defined by those operators of special quaternion numbers.
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Dual number was defined and developed by Clifford in 1873 and applications of
dual number were studied by Kotelnikov in 1895. Yaglom [18] provided a description
and basic properties of dual numbers in 1963. Deakin [1] gives the definition and
theorems of analytic functions of a dual variable. Ferdinands et al. [3] obtained the
theorems of that a Laguerre transformation on the space of parabolas in the dual
plane.

In this paper, we give a representation of dual quaternions and their calcula-
tions. Also, we investigate the definition and properties of a regular function and
a corresponding harmonic function of dual quaternion-valued functions in Clifford
analysis.

2. Preliminaries

We consider the notions and representations of dual-quaternions. Let 1, i, j, k

be bases of the algebra of quaternions, denoted by H, with the following rules:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Let the set of dual quaternions be

H(D) := {P | P = λ0 + iλ1 + jλ2 + kλ3, λr ∈ D (r = 0, 1, 2, 3)},

where D is the set of dual numbers. For an element P ∈ H(D), we give the forms of
the real part and the vector part of a dual quaternion P = (λr, λv), where λr = λ0

is the non-pure part, λv = iλ1 + jλ2 + kλ3 is the pure part of P and λl = xl + εyl

(l = 0, 1, 2, 3) are dual numbers. The addition and multiplication of elements P and
Q of dual quaternions are given by

P + Q = (λ0 + µ0) + i(λ1 + µ1) + j(λ2 + µ2) + k(λ3 + µ3),

PQ = λ0µ0 − λ1µ1 − λ2µ2 − λ3µ3

+i(λ0µ1 + λ1µ0 + λ2µ3 − λ3µ2)

+j(λ0µ2 − λ1µ3 + λ2µ0 + λ3µ1)

+k(λ0µ3 + λ1µ2 − λ2µ1 + λ3µ0).

The dual quaternions H(D) have a eight-dimensional algebra over the real field R,
with an identity element 1. Also, we write H(D) = R

⊕
V (D), where V (D) is a

three-dimensional dual vector space, that is, a six-dimensional vector space, and the
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product of two quaternions is given by

(λr; λv)(µr; µv) = (λrµr − λv̂·µv;λrµv + µrλv + λv×̂µv),

where λr, µr ∈ D, λv, µv ∈ V (D),

λv̂·µv := x1l1 + x2l2 + x3l3 + ε(x1m1 + x2m2 + x3m3 + y1l1 + y2l2 + y3l3)

is the inner product of the elements of V (D), and

λv×̂µv := (x2l3 − x3l2; x3l1 − x1l3; x1l2 − x2l1)

+ε(x2m3 − x3m2 + y2l3 − y3l2; x3m1 − x1m3 + y3l1 − y1l3;

x1m2 − x2m1 + y1l2 − y2l1)

is the vector product on V (D).
The conjugate of the dual quaternion P is given by

P ∗ = λ0 − iλ1 − jλ2 − kλ3.

For every element of H(D), their product is

(2.1) PP ∗ = P ∗P = λ2
0 + λ2

1 + λ2
2 + λ2

3.

The modulus, denoted by MP , of P is the dual number

MP = PP ∗.

From (2.1), it follows for every non-zero divisor dual quaternion, it has a multiplica-
tive inverse element of H(D),

P−1 =
P ∗

MP
(xt 6= 0, t = 0, 1, 2, 3).

Now, we consider the following differential operators in H(D):

D :=
∂

∂λ0
+ i

∂

∂λ1
− j

∂

∂λ2
− k

∂

∂λ3

and

D∗ =
∂

∂λ0
− i

∂

∂λ1
+ j

∂

∂λ2
+ k

∂

∂λ3
,

where
∂

∂λt
:=

1
2

( ∂

∂xt
+ ε

∂

∂yt

)
(t = 0, 1, 2, 3).

Consider an open subset Ω of H(D) and a function F : Ω → H(D) of class
C1(Ω,H(D)) such that

F (P ) = f0 + if1 + jf2 + kf3,
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called a dual quaternion-valued function, where

ft : D4 → D, ft = ft(λ0, λ1, λ2, λ3)

are dual number-valued functions and ft = ut + εvt with ut, vt : R8 → R (t =
0, 1, 2, 3).

Definition 2.1. Let Ω be an open set in H(D). The function F is said to be left-
regular in Ω if ft (t = 0, 1, 2, 3) are continuously differentiable quaternion-valued
functions and the equation D∗F = 0 is satisfied.

From the calculation of the equation D∗F = 0 in Definition 2.1, we have the
equivalent equations of D∗F = 0:

D∗F =
∂F

∂λ0
− i

∂F

∂λ1
+ j

∂F

∂λ2
+ k

∂F

∂λ3

=
(∂f0

∂λ0
+

∂f1

∂λ1
− ∂f2

∂λ2
− ∂f3

∂λ3

)

+i
(
−∂f0

∂λ1
+

∂f1

∂λ0
− ∂f2

∂λ3
+

∂f3

∂λ2

)

+j
(∂f0

∂λ2
+

∂f1

∂λ3
+

∂f2

∂λ0
+

∂f3

∂λ1

)

+k
(∂f0

∂λ3
− ∂f1

∂λ2
− ∂f2

∂λ1
+

∂f3

∂λ0

)
.

Hence, we have a corresponding Cauchy-Riemann system as follows:

(2.2)





∂f0

∂λ0
+

∂f1

∂λ1
− ∂f2

∂λ2
− ∂f3

∂λ3
= 0,

−∂f0

∂λ1
+

∂f1

∂λ0
− ∂f2

∂λ3
+

∂f3

∂λ2
= 0,

∂f0

∂λ2
+

∂f1

∂λ3
+

∂f2

∂λ0
+

∂f3

∂λ1
= 0

∂f0

∂λ3
− ∂f1

∂λ2
− ∂f2

∂λ1
+

∂f3

∂λ0
= 0.

For example, a function F (P ) = P is left-regular in H(D) since the equation D∗F =
0 is satisfied. In other words, functions F (P ) = P ∗ and F (P ) = P−1 are not
left-regular since D∗F 6= 0.

Also, from the definition of the inner product of dual quaternions, we have the
Laplacian operator, denoted by 4H(D), as follows:
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(2.3) 4H(D) := DD∗ =
3∑

t=0

∂2

∂λ2
t

.

Definition 2.2. Let U be an open set of D4 and a function fr (r = 0, 1, 2, 3) be
defined on U . Then fr is said to be harmornic if it satisfies the following equation:

4H(D)fr = 0 (r = 0, 1, 2, 3).

Definition 2.3. Let Ω be an open set of H(D) and a function F be defined on Ω.
Then F is said to be harmornic in H(D) if all components of F are harmornic.

Theorem 2.4. Let Ω be an open set of H(D) and a function F be left-regular on
Ω. Then the equation

(2.4) DF =
∂F

∂λ0
= i

∂F

∂λ1
− j

∂F

∂λ2
− k

∂F

∂λ3

is satisfied.

Proof. From the definition of D, we have

DF =
( ∂F

∂λ0
+ i

∂F

∂λ1
− j

∂F

∂λ2
− k

∂F

∂λ3

)

=
(∂f0

∂λ0
− ∂f1

∂λ1
+

∂f2

∂λ2
+

∂f3

∂λ3

)

+i
(∂f0

∂λ1
+

∂f1

∂λ0
+

∂f2

∂λ3
− ∂f3

∂λ2

)

+j
(
−∂f0

∂λ2
− ∂f1

∂λ3
+

∂f2

∂λ0
− ∂f3

∂λ1

)

+k
(
−∂f0

∂λ3
+

∂f1

∂λ2
+

∂f2

∂λ1
+

∂f3

∂λ0

)
.

By rearranging the terms of the above equations and applying the equation (2.2),
we obtain the result (2.4). ¤

Remark 2.5. From the equation (2.1), we obtain that each regular function is also
harmonic. And, from the Definition 2.1 and the equation (2.1), if F is harmonic,
then DF is regular in H(D).

Theorem 2.6. Let Ω be an open neighborhood Ω ⊂ D4 of zero and ϕ be a function
defined on Ω with values in dual numbers such that

ϕ = ϕ1 + εϕ2, ϕr = ϕr(λ0, λ1, λ2, λ3).
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If ϕ is harmonic and continuously second differentiable, then there exists a regular
function F defined on Ω such that

F (P ) := ϕ + Pu
{∫ 1

0
l2Dϕ(lP )P dl

}
,

where 0 ≤ l ≤ 1 and Pu{} is the pure part of {}.

Proof. We assume that 0 ∈ Ω and for any P ∈ Ω and 0 ≤ l ≤ 1 we have

lP0 + (1− l)P ∈ Ω

with respect to P0. We let the function

F (P ) := ϕ + Pu

∫ 1

0
l2Dϕ(lP )P dl.

Since we have

NP
{∫ 1

0
l2Dϕ(lP )P dl

}

=
∫ 1

0
l2

(∂ϕ(lP )
∂λ0

λ0 + i
∂ϕ(lP )

∂λ1
λ1 − j

∂ϕ(lP )
∂λ2

λ2 − k
∂ϕ(lP )

∂λ3
λ3

)
dl

=
∫ 1

0
l2

dϕ(lP )
dl

dl = ϕ(P )−
∫ 1

0
lϕ(lP ) dl,

where NP{} is the non-pure part of {}, we obtain the function

F (P ) =
∫ 1

0
(l2Dϕ(lP )P + lϕ(lP )) dl.

Since ϕ and Dϕ have continuously differentiable in Ω, for P ∈ Ω,

D∗F (P ) =
∫ 1

0
l2D∗(Dϕ(lP ))P dl

+
∫ 1

0
l2{Dϕ(lP ) + iDϕ(lP )i + jDϕ(lP )j + kDϕ(lP )k} dl.

+
∫ 1

0
l2D∗ϕ(lP ) dl.

In other words,

D∗(Dϕ(lP )) = l4H(D)ϕ(lP ) = 0.

Since ϕ is harmonic in Ω and ϕ is a dual number, we have

Dϕ(lP ) + iDϕ(lP )i + jDϕ(lP )j + kDϕ(lP )k = D∗ϕ(lP ).

Hence, D∗F = 0 in Ω and so F is regular in Ω. ¤
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