• Title/Summary/Keyword: Multiple input and multiple output system

Search Result 588, Processing Time 0.024 seconds

A Comparative Study of List Sphere Decoders for MIMO Systems

  • Pham, Van-Su;Yoon, Giwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.143-146
    • /
    • 2009
  • In this paper, we investigated the list sphere decoders (LSD) for multiple-input multiple-output (MIMO) systems. We showed that the ordering procedures play an important role in LSD in order to achieve the low complexity without degrading the bit-error-rate (BER) performance. Then, we proposed a novel ordering algorithm for the LSD which uses a look-up table and simply comparative operations. Comparative results in terms of BER performance and computational complexity are provided through computer simulations.

  • PDF

Test bed implementation and the indoor antenna algorithms fit for the indoor channel characteristic (옥내 무선 채널에 적합한 옥내 안테나 알고리즘과 검증시스템 구현)

  • Lee Yong up;Seo Young jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.207-214
    • /
    • 2005
  • In the indoor wireless communication, it is considered the indoor wireless system architecture of single input multiple output (SIMO) that used with multiple antenna in order to cope with the indoor fading characteristic due to severe angler spread. We propose the mean steering vector technique as a method to enhance the system Performance, implement the test bed system composed of a PC and the algorithms of the wireless system, and analysis the performance of those algorithms. In addition, the overall operation scenario, overall architecture, and the execution time of the algorithms, of the test bed for the indoor wireless system are presented.

Energy-saving optimization on active disturbance rejection decoupling multivariable control

  • Da-Min Ding;Hai-Ma Yang;Jin Liu;Da-Wei Zhang;Xiao-Hui Jiang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.850-860
    • /
    • 2023
  • An industrial control process multiple-input multiple-output (MIMO) coupled system is analyzed in this study as an example of a Loss of Coolant Accident (LOCA) simulation system. Ordinary control algorithms can complete the steady state of the control system and even reduce the response time to some extent, but the entire system still consumes a large amount of energy after reaching the steady state. So a multivariable decoupled energy-saving control method is proposed, and a novel energy-saving function (economic function, Eco-Function) is specially designed based on the active disturbance rejection control algorithm. Simulations and LOCA simulation system tests show that the Eco-function algorithm can cope with the uncertainty of the multivariable system's internal parameters and external disturbances, and it can save up to 67% of energy consumption in maintaining the parameter steady state.

Outage Probability of a Novel Antenna Selection Schemes in Multipath Environment (다중경로 환경에서 새로운 안테나 선택 기법의 사고확률)

  • 임연주;오창국;박상규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.876-882
    • /
    • 2003
  • The future wireless communication systems will use spatial multiplexing with Multiple Input Multiple Output(MIMO) system to take advantage of large channel capacity gains. In such systems it will be desirable to select a sub-set of available transmit or receive antennas to reduce cost and complexity. In this paper we propose a novel antenna selection schemes for MIMO systems be suitable for multipath environment. Also, we analyze the capacity and define the outage probability for a novel antenna selection schemes for MIMO systems in multipath environment.

Triangulation Algorithm for Multi-user Spatial Multiplexing in MIMO Downlink Channels (MIMO 다운링크 채널에서 다중사용자 공간다중화를 위한 알고리즘)

  • Lee, Heun-Chul;Paulraj, Aroyaswami;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.45-54
    • /
    • 2010
  • This paper studies the design of a multiuser multiple-input multiple-output (MIMO) system, where a base station (BS) transmits independent messages to multiple users. The remarkable "dirty paper coding (DPC)" result was first presented by Costa that the capacity does not change if the Gaussian interference is known at the transmitter noncausally. While several implementable DPC schemes have been proposed recently for single-user dirty-paper channels, DPC is still difficult to implement directly in practical multiuser MIMO channels. In this paper, we propose a network channel matrix triangulation (NMT) algorithm for utilizing interference known at the transmitter. The NMT algorithm decomposes a multiuser MIMO channel into a set of parallel, single-input single-output dirty-paper subchannels and then successively employs the DPC to each subchannel. This approach allows us to extend practical single-user DPC techniques to multiuser MIMO downlink cases. We present the sum rate analysis for the proposed scheme. Simulation results show that the proposed schemes approach the sum rate capacity of the multiuser MIMO downlink at moderate signal-to-noise ratio (SNR) values.

Outage Performance Study of Selective MIMO Transmission in Wireless Relaying Systems (무선 중계 시스템에서 선택적 MIMO 전송에 대한 아웃티지 성능 연구)

  • Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2259-2264
    • /
    • 2013
  • In this paper, a selective multiple-input multiple-output(MIMO) transmission scheme is proposed in dual-hop MIMO relaying systems, in which orthogonal space-time block code(OSTBC) transmission and transmit antenna selection(TxAS) transmission are selectively used. Assuming independent Rayleigh fading channels, the outage probability is analyzed for a decode-and-forward(DF) relaying system using the selective MIMO transmission scheme. Also, through numerical investigation, the outage performance for the DF relaying system using the selective MIMO transmission scheme is compared with that for the conventional DF relaying system using OSTBC or TxAS. Moreover, from the performance comparison, it is shown that the proposed scheme can reduce the system overhead without outage performance degradation.

A New Control Strategy for Input Voltage Sharing in Input Series Output Independent Modular DC-DC Converters

  • Yang, Wei;Zhang, Zhijie;Yang, Shiyan
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.632-640
    • /
    • 2017
  • Input series output independent (ISOI) dc-dc converter systems are suitable for high voltage input and multiple output applications with low voltage rating switches. This paper proposes a novel control strategy consisting of one output voltage regulating (OVR) control loop and n-1 (n is the number of modules in the ISOI system) input voltage sharing (IVS) control loops. An ISOI system with the proposed control strategy can be applied to applications where the output loads of each module are the same. Under these conditions, IVS can be achieved and output voltages copying can be realized in an ISOI system. In this control strategy there is only one controller for each module and the design process of the control loops is simple. Since no central controller is needed in the system, modularity of the system is improved. The operation principle of the new control strategy is introduced and the control effect is simulated. Then the output power and voltage characteristics of an ISOI system under this new control strategy are analyzed. The stability of the proposed control strategy is explored base on a Hurwitz criterion, and the design guide line of the control strategy is given. A two module ISOI system prototype is fabricated and tested in the laboratory. Experimental results verify the effectiveness of the proposed control strategy.

Approximate Minimum BER Power Allocation of MIMO Spatial Multiplexing Relay Systems (다중 안테나 공간 다중화 릴레이 시스템을 위한 근사 최소 비트 오율 전력 할당 방법)

  • Hwang, Kyu-Ho;Choi, Soo-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.337-344
    • /
    • 2011
  • In this paper, a multiple-input and multiple-output (MIMO) spatial multiplexing (SM) relay system is studied in a bit error rate (BER) sense, where every node is deployed with multiple antennas. In order to efficiently use the limited power resource, it is essential to optimally allocate the power to nodes and antennas. In this context, the power allocation (PA) algorithm based on minimum BER (MBER) for a MIMO SM relay system is proposed, which is derived by direct minimization of the average BER, and divided into inter-node and inter-antenna PA algorithm. The proposed scheme outperforms the conventional equal power allocation (EPA) algorithm without extra power consumption.

Beam Tracking Method Using Unscented Kalman Filter for UAV-Enabled NR MIMO-OFDM System with Hybrid Beamforming

  • Yuna, Sim;Seungseok, Sin;Jihun, Cho;Sangmi, Moon;Young-Hwan, You;Cheol Hong, Kim;Intae, Hwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.280-294
    • /
    • 2023
  • Unmanned aerial vehicles (UAVs) and millimeter-wave frequencies play key roles in supporting 5G wireless communication systems. They expand the field of wireless communication by increasing the data capacities of communication systems and supporting high data rates. However, short wavelengths, owing to the high millimeter-wave frequencies can cause problems, such as signal attenuation and path loss. To address these limitations, research on high directional beamforming technologies continue to garner interest. Furthermore, owing to the mobility of the UAVs, it is essential to track the beam angle accurately to obtain full beamforming gain. This study presents a beam tracking method based on the unscented Kalman filter using hybrid beamforming. The simulation results reveal that the proposed beam tracking scheme improves the overall performance in terms of the mean-squared error and spectral efficiency. In addition, by expanding analog beamforming to hybrid beamforming, the proposed algorithm can be used even in multi-user and multi-stream environments to increase data capacity, thereby increasing utilization in new-radio multiple-input multiple-output orthogonal frequency-division multiplexing systems.

An Efficient Soft-Output MIMO Signal Detection Method Based on Multiple Channel Ordering Technique and Its VLSI Implementation (다중 채널 순서화 기술 기반 효율적인 Soft-Output MIMO 신호검출 기법과 VLSI 구현)

  • Im, Tae-Ho;Yu, Sung-Wook;Kim, Jae-Kwon;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.1044-1051
    • /
    • 2010
  • In this paper, we propose an efficient soft-output signal detection method for spatially multiplexed multiple input multiple output (MIMO) systems. The proposed method is based on the ordered successive interference cancellation (OSIC) algorithm, but it significantly improves the performance of the original OSIC algorithm by solving the error propagation problem. The proposed method combines this enhanced OSIC (ESIC) algorithm with a multiple ordering technique in a very efficient way. As a result, the log likelihood ratio (LLR) values can be computed by using a very small set of candidate symbol vectors. The proposed method has been implemented with a $0.13{\mu}m$ CMOS technology for a $4{\times}4$ 16-QAM MIMO system. The simulation and implementation results show that the proposed detector provides a very good solution in terms of performance and hardware complexity.