• Title/Summary/Keyword: Multiple input

Search Result 2,089, Processing Time 0.038 seconds

Input Voltage Sharing Control for Input-Series-Output-Parallel DC-DC Converters without Input Voltage Sensors

  • Guo, Zhiqiang;Sha, Deshang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.83-87
    • /
    • 2012
  • Input-series-output-parallel (ISOP) modular converters consisting of multiple modular DC/DC converters can enable low voltage rating switches for use in high voltage input applications. In this paper, an input voltage sharing control strategy for input-series-output-parallel (ISOP) full-bridge (FB) DC/DC converters is proposed. By sensing the difference in the input current of two modules, the system can achieve input voltage sharing for DC-DC modules. The effectiveness of the proposed control strategy is verified by simulation and experimental results obtained with a 200w-50kHz prototype.

Design and Implementation of a Low-Complexity and High-Throughput MIMO Symbol Detector Supporting up to 256 QAM (256 QAM까지 지원 가능한 저 복잡도 고 성능의 MIMO 심볼 검파기의 설계 및 구현)

  • Lee, Gwang-Ho;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.34-42
    • /
    • 2014
  • This paper presents a low-complexity and high-throughput symbol detector for two-spatial-stream multiple-input multiple-output systems based on the modified maximum-likelihood symbol detection algorithm. In the proposed symbol detector, the cost function is calculated incrementally employing a multi-cycle architecture so as to eliminate the complex multiplications for each symbol, and the slicing operations are performed hierarchically according to the range of constellation points by a pipelined architecture. The proposed architecture exhibits low hardware complexity while supporting complicated modulations such as 256 QAM. In addition, various modulations and antenna configurations are supported flexibly by reconfiguring the pipeline for the slicing operation. The proposed symbol detector is implemented with 38.7K logic gates in a $0.11-{\mu}m$ CMOS process and its throughput is 166 Mbps for $2{\times}$3 16-QAM and 80Mbps for $2{\times}3$ 64-QAM where the operating frequency is 478 MHz.

Performance analysis of underwater acoustic communication using time reversal mirror based on generalized sidelobe canceller (일반화된 부엽 제거기 기반 시역전 기술을 이용한 수중음향통신 성능 분석)

  • Nam, Ki-Hoon;Kim, J.S.;Byun, Gi Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.389-394
    • /
    • 2016
  • MIMO (Multiple-Input-Multiple-Output) in underwater acoustic communication has distortion of received signal because of ISI (Inter-Symbol Interference) and crosstalk among transmitters. Time-reversal mirror was used for compensating of signal distortion, but it has a limit in eliminating crosstalk effectively. This paper proposes a time-reversal mirror based on GSC (Generalized Sidelobe Canceller) for removing crosstalk. The FAF05 (The Focused Acoustic Forecasting 05) experimental data has been used to verify the suggested method by comparison with the conventional time-reversal for communication performance, and it is demonstrated that the suggested method produces better communication performance results than conventional time-reversal.

Detection Performance of Noncoherent Radar: MIMO Radar, Phased Array Radar, Directional MIMO Radar (비동기식 레이더의 검출 성능 비교: MIMO 레이더, 위상 배열 레이더, 지향성 MIMO 레이더)

  • An, Chan-Ho;Yang, Jang-Hoon;Pak, Ui-Young;Ryu, Young-Jae;Han, Duk-Chan;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1752-1757
    • /
    • 2011
  • In a traditional phased array radar, closely spaced antenna elements transmit a scaled version of single waveform to maximize the signal energy. On the contrary, a multiple-input multiple-output (MIMO) radar consists of widely separated antennas and transmits an arbitrary waveform from each antenna element. These waveforms and spatial diversity enable superior capabilities compared with phased array radar. At high signal-to-noise ratio (SNR), the detection performance of the MIMO radar is better than the phased array radar due to the diversity gains. However, the phased array radar outperforms the MIMO radar at low SNR, due to the energy maximization. In this paper, we investigate the compromised scheme between the MIMO radar and the phased array radar. Employing the MIMO radar equipped with phased array elements, the compromised scheme achieves both array gain and diversity gain. Also, we compare the performance degradation when the steering direction is incorrect.

Enhanced Bit-Loading Techniques for Adaptive MIMO Bit-Interleaved Coded OFDM Systems (적응 다중 안테나 Bit-Interleaved Coded OFDM 시스템을 위한 향상된 Bit-Loading 기법)

  • Cho, Jung-Ho;Sung, Chang-Kyung;Moon, Sung-Hyun;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.18-26
    • /
    • 2009
  • When channel state information (CSI) is available at the transmitter, the system throughput can be enhanced by adaptive transmissions and opportunistic multiuser scheduling. In this paper, we consider multiple-input multiple-output (MIMO) systems employing bit-interleaved coded orthogonal frequency division multiplexing (BIC-OFDM). We first propose a bit-loading algorithm based on the Levin-Campello algorithm for the BIC-OFDM. Then we will apply this algorithm to the MIMO system with a finite set of constellations, by reassigning residual power on each stream Simulation results show that proposed bit-loading scheme which takes the residual power into account improves the system performance especially at high signal-to-noise ratio (SNR) range.

63Mbps One-to-One Video Transmission Wireless Scheme in a Single-carrier Modulation with 2×2 Multiple Input Multiple Output (2×2 MIMO를 적용한 63Mbps급 단일 반송파 변조 방식의 일대일 영상전송 무선방식)

  • Paik, Junghoon;Kim, Namho;Kim, Young Woo;Hwang, Yongseong
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1143-1151
    • /
    • 2019
  • In this paper, we propose a wireless transmission scheme that maximizes transmission efficiency per frequency bandwidth in a single carrier modulation scheme. The proposed scheme employs a decision directed channel tracking technique to remove both pilot signal and the guard interval signal between symbols in frames. It performs a raised cosine pulse shaping function with an roll-off factor of 0.05. In addition, 2×2 multiple input and multiple output using two polarized antennas is applied and both equalization and signal separation are performed in the frequency domain. The wireless modem with this technology confirms that the transmission speed of up to 63.3Mbps is achieved under the 5MHz frequency bandwidth

A Novel Adaptive Turbo Receiver for Large-Scale MIMO Communications

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Tsai, Bo-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2998-3017
    • /
    • 2018
  • Massive (large-scale) MIMO (multiple-input multiple-output) is one of the key technologies in next-generation wireless communication systems. This paper proposes a high-performance low-complexity turbo receiver for SC-FDMA (single-carrier frequency-division multiple access) based MMIMO (massive MIMO) systems. Because SC-FDMA technology has the desirable characteristics of OFDMA (orthogonal frequency division multiple access) and the low PAPR (peak-to-average power ratio) of SC transmission schemes, the 3GPP LTE (long-term evolution) has adopted it as the uplink transmission to meet the demand high data rate and low error rate performance. The complexity of computing will be increased greatly in base station with massive MIMO (MMIMO) system. In this paper, a low-complexity adaptive turbo equalization receiver based on normalized minimal symbol-error-rate for MMIMO SC-FDMA system is proposed. The proposed receiver is with low complexity than that of the conventional turbo MMSE (minimum mean square error) equalizer and is also with better bit error rate (BER) performance than that of the conventional adaptive turbo MMSE equalizer. Simulation results confirm the effectiveness of the proposed scheme.

A Generalized Blind Adaptive Multi-User Detection Algorithm for Multipath Rayleigh Fading Channel Employed in a MIMO System

  • Fahmy Yasmine A.;Mourad Hebat-Allah M.;Al-Hussaini Emad K.
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.290-296
    • /
    • 2006
  • In this paper, a generalized blind adaptive algorithm is introduced for multi-user detection of direct sequence code division multiple access (OS-COMA) wireless communication systems. The main property of the proposed algorithm is its ability to resolve the multipath fading channel resulting in inter symbol interference (ISI) as well as multiple access interference (MAI). Other remarkable properties are its low complexity and mitigation to the near-far problem as well as its insensitivity to asynchronous transmission. The proposed system is based on the minimization of the output energy and convergence to the minimum mean square error (MMSE) detector. It is blind in the sense that it needs no knowledge of the other users' signatures, only the intended user signature and timing are required. Furthermore, the convergence of the minimum output energy (MOE) detector to the MMSE detector is analytically proven in case of M-ary PSK. Depicted results show that the performance of the generalized system dominates those previously considered. Further improvements are obtained when multiple input multiple output (MIMO) technique is employed.

Polar-Format-Processing-Based Moving Target Imaging in MIMO Radar Environment (MIMO 레이다 환경에서 Polar Format Processing 기반 이동표적 이미징)

  • Choi, Sang-Hyun;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.124-131
    • /
    • 2019
  • This study presents an imaging algorithm that can provide an image of a moving target in a multiple-input-multiple-output radar environment where multiple transmitting and receiving radars are fixed on the ground. The proposed algorithm, which is based on polar format processing using plane wave approximation, is shown to provide an unaliased image by using multiple transmitting radars even when the distances between the receiving radars are relatively large. We derive the conditions necessary to deploy the transmitting radars by which the resolution of the reconstructed image can be improved, while simultaneously reducing aliasing artifacts. Moreover, we offer a means of separating out each transmitting radar target echo. Finally, the performance of the proposed system is verified through a simulation.

Performance Evaluation of Underwater Acoustic Communication using Transmit Diversity in Water Tank (수조에서 전송 다이버시티를 사용한 수중음향통신의 성능 고찰)

  • Park, Chan-Sub;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.269-273
    • /
    • 2013
  • Underwater acoustic channels are generally recognized as one of the most difficult communication media because of the multipath propagation, dispersion, and so on. MIMO (Multiple-input multiple-output) techniques have been actively pursued in underwater acoustic communications recently to increase the data rate over the bandwidth-limited channels. The transmit diversity techniques can be applied in this case, and one of them is Alamouti's scheme. In this paper the performances of the transmit diversity technique are evaluated via experiment. Two transmitters and two receivers were used in experiment, and the experiment was performed in indoor water tank. The error rate 5~8% was confirmed in experimental results, and these are the improved values than the error rate 14.8% for SISO(Single-input single-output) channel under same data rate condition.