DOI QR코드

DOI QR Code

Performance analysis of underwater acoustic communication using time reversal mirror based on generalized sidelobe canceller

일반화된 부엽 제거기 기반 시역전 기술을 이용한 수중음향통신 성능 분석

  • 남기훈 (국립해양조사원 해양과학조사연구실) ;
  • 김재수 (한국해양대학교 해양공학과) ;
  • 변기훈 (한국해양대학교 해양과학기술전문대학원)
  • Received : 2016.08.24
  • Accepted : 2016.09.23
  • Published : 2016.09.30

Abstract

MIMO (Multiple-Input-Multiple-Output) in underwater acoustic communication has distortion of received signal because of ISI (Inter-Symbol Interference) and crosstalk among transmitters. Time-reversal mirror was used for compensating of signal distortion, but it has a limit in eliminating crosstalk effectively. This paper proposes a time-reversal mirror based on GSC (Generalized Sidelobe Canceller) for removing crosstalk. The FAF05 (The Focused Acoustic Forecasting 05) experimental data has been used to verify the suggested method by comparison with the conventional time-reversal for communication performance, and it is demonstrated that the suggested method produces better communication performance results than conventional time-reversal.

수중음향통신에서 다중 입출력(Multiple-Input-Multiple-Output, MIMO) 환경은 인접 심볼 간 간섭뿐만아니라 송신기 간의 채널 간 간섭의 영향으로 인하여 수신 신호의 왜곡이 발생하는 특징을 갖는다. 신호 보상을 위하여 시역전 기술이 이용되었지만 기존의 시역전 기술은 채널 간 간섭을 효과적으로 제거하지 못하는 한계가 있다. 본 논문에서는 채널간 간섭의 제거를 위해 일반화된 부엽 제거기(Generalized Sidelobe Canceller, GSC)를 적용한 시역전 기술을 제안한다. 제안된 방법의 검증을 위해 FAF05(The Focused Acoustic Forecasting 05) 해상 실험 데이터를 이용하여 기존의 시역전 기술과의 통신 성능 비교를 수행하였으며, 그 결과 제안된 방법에 대한 통신 성능이 기존의 시역전 기술에 비해 향상됨을 확인 할 수 있었다.

Keywords

References

  1. P. J. Urick, Principles of Underwater Sound 3nd Ed (McGraw-Hill, New York, 1983), pp. 11-147.
  2. B. C. Gwun and K. M Kim, "Experimental performance evaluation of MIMO underwater acoustic communication in water tank" (in Korean), J. Korea Inst. Inf. Commun. Eng. 17, 1577-1582 (2013). https://doi.org/10.6109/jkiice.2013.17.7.1577
  3. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, T. Akal, and M.Stevenson, "Multiuser communications using passive time reversal," IEEE J. OCEAN. ENG. 32, 915-926 (2007). https://doi.org/10.1109/JOE.2007.904311
  4. H. C. Song, J. S. Kim, W. S. Hodgkiss, and J. H. Joo, "Crosstalk mitigation using adaptive time reversal," J. Acoust. Soc. Am. 127, EL19 (2010). https://doi.org/10.1121/1.3280234
  5. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akal, and M. Stevenson "Spatial diversity in passive time reversal communications," J. Acoust. Soc. Am. 120, 2067-2076 (2006). https://doi.org/10.1121/1.2338286
  6. M. Stojanovic, J. A. Capitovic, and J. G. Proakis, "Adaptive multi-channel ombining and equalization for underwater acoustic communications," J. Acoust. Soc. Am. 94, 1621-1631, (1993). https://doi.org/10.1121/1.408135
  7. J. S. Kim, H. C. Song, and W. A. Kuperman, "Adaptive time-reversal mirror," J. Acoust. Soc. Am. 109, 1817-1825 (1993).
  8. M. J. Eom, J. S. Kim, J. H. Cho, H. Y. Kim, and I. Sung, "Algorithm and experimental verification of underwater acoustic communication based on passive tme-reversal mirror" (in Korean), J. Acoust. Soc. Kr. 33, 392-399 (2014). https://doi.org/10.7776/ASK.2014.33.6.392
  9. L. J. Griffiths and C. W. Jim, "An alternative approach to linearly constrained adaptive beamforming," IEEE Trans. Antennas Propag. 30, 27-34 (1982). https://doi.org/10.1109/TAP.1982.1142739
  10. D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and Techniques (Prentice Hall, Englewood Cliffs, 1993), pp. 349-371.
  11. A. M. Zoubir, M. Viberg, R. Chellappa, and S. Theodoridis, Academic Press Library in Signal Processing: Array and Statistical Signal Processing (Academic Press, Amsterdam, 2014), pp. 527-529.