DOI QR코드

DOI QR Code

Performance Evaluation of Underwater Acoustic Communication using Transmit Diversity in Water Tank

수조에서 전송 다이버시티를 사용한 수중음향통신의 성능 고찰

  • Park, Chan-Sub (Department of Electronic Eng., Inha University) ;
  • Kim, Ki-Man (Department of Radio Communication Eng., Korea Maritime University)
  • Received : 2013.02.06
  • Accepted : 2013.05.02
  • Published : 2013.06.30

Abstract

Underwater acoustic channels are generally recognized as one of the most difficult communication media because of the multipath propagation, dispersion, and so on. MIMO (Multiple-input multiple-output) techniques have been actively pursued in underwater acoustic communications recently to increase the data rate over the bandwidth-limited channels. The transmit diversity techniques can be applied in this case, and one of them is Alamouti's scheme. In this paper the performances of the transmit diversity technique are evaluated via experiment. Two transmitters and two receivers were used in experiment, and the experiment was performed in indoor water tank. The error rate 5~8% was confirmed in experimental results, and these are the improved values than the error rate 14.8% for SISO(Single-input single-output) channel under same data rate condition.

수중음향 채널은 일반적으로 다중경로 전달과 분산 등으로 인해 통신하기에 어려운 매질 가운데 하나로 인식된다. MIMO (Multiple-input multiple-output) 기술은 대역이 제한된 수중음향 채널에서 데이터 전송율을 증가시키기 위해 최근 활발히 연구되고 있다. 이 경우 전송 다이버시티 기술을 적용할 수 있는데 대표적인 것이 Alamouti 구조이다. 이 논문에서는 실험을 통하여 전송 다이버시티 기술의 성능을 고찰하였다. 실험에는 2개의 송신기와 2개의 수신기가 사용되었으며, 실내의 음향수조에서 수행되었다. 실험 결과 5~8%의 오차율을 확인하였는데 이는 같은 전송율을 기준으로 SISO(Single-input single-output) 채널에서의 오차율 14.8% 보다 향상된 결과를 나타내었다.

Keywords

References

  1. Alamouti, S. M.(1998), "A simple transmit diversity technique for wireless communications," IEEE J. Selected Areas Communications, Vol. 16, pp. 1451-1458. https://doi.org/10.1109/49.730453
  2. Choi, J. W., Riedl, J., Kim K., Singer A. C., and Preisig J.C.(2011), "Adaptive linear turbo equalization over doubly selective channels," IEEE J. Oceanic Eng., Vol. 36, No. 4, pp. 473-489. https://doi.org/10.1109/JOE.2011.2158013
  3. Han, D. G., Hoe, B., Jang, K. H., Byun, S. H., Kim, S. M., and Lim, Y. K.,(2010), "Performance Evaluation of MIMO-OFDM System in Underwater Communication Environments," Proceedings of Korea Maritime Information & Communication Conference, pp. 597-599.
  4. Han, J. W., Kim, K. M., and Son, Y. J.(2011),"A Study on the Underwater Acoustic Communication using Direct Sequence Spread Spectrum," Journal of Korean Navigation and Port Research, Vol. 35, No. 8, pp. 643-647. https://doi.org/10.5394/KINPR.2011.35.8.643
  5. Ko, H. R., Lee, S. K., Kim, M. S., Cho, D. Y., Kim, K. Y., Park, B. H., Park, J. W., and Lim, Y. K.(2012), "Performance Evaluation of Coherence Characteristics of the Received Signals by Sensor Spacing in Underwater Channel Environments," Journal of Acoustical Society of Korea, Vol. 31, No. 2, pp. 107-113. https://doi.org/10.7776/ASK.2012.31.2.107
  6. Li B. and Stojanovic M.(2010), "A simple design for joint channel estimation and data detection in an Alamouti OFDM system," Proc. of MTS/IEEE Oceans Conference, pp. 1-5.
  7. Lindskog E. and Paulraj A.(2000), "A transmit diversity scheme for channels with intersymbol interference," Proc. of ICC 2000, Vol. 1, pp. 307-311.
  8. Ling J., Yardibi T., Su X., He H. and Li J.(2009), "Enhanced channel estimation and symbol detection for high speed multi-input multi-output underwater acoustic communications," J. Acoust. Soc. Am., Vol. 125, pp. 3067-3078. https://doi.org/10.1121/1.3097467
  9. Song A., Badiey M., McDonald V. K. and Yang T.C. (2011), "Time reversal receivers for high data rate acou stic multiple-input-multiple-output communication," IEEE J. Ocean. Eng., Vol. 36, No. 4, pp. 525-538. https://doi.org/10.1109/JOE.2011.2166660
  10. Wiesel A., Goldberg J. and Messer-Yaron H.(2006), "SNR estimation in time-varying fading channels," IEEE Trans. Communications, Vol. 54, No. 5, pp. 841-848. https://doi.org/10.1109/TCOMM.2006.873995