• 제목/요약/키워드: Multiple electrodes

검색결과 97건 처리시간 0.026초

비수식화 DNA를 이용한 차세대형 바이오칩의 개발 (Development of Next Generation Biochip Using Indicator-free DNA)

  • 최용성;문종대;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.71-73
    • /
    • 2006
  • This research aims to develop a multiple channel electrochemical DNA chip using micro- fabrication technology. At first, we fabricated a high integrated type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized by an electrical force. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in the anodic peak current. Therefore. it is able to detect a various genes electrochemically after immobilization of a various probe DNA and hybridization of label-free DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

투명 디스플레이로써 활용 가능한 다수전극형 전자종이 필름 제안 (Suggestion of Multi-Electrode Type Electronic Paper Film to Can be Used as a Transparent Display)

  • 이상일;홍연찬;김영조
    • 한국전기전자재료학회논문지
    • /
    • 제32권4호
    • /
    • pp.296-301
    • /
    • 2019
  • A multiple-electrode-type electronic paper film can implement a single color and control the transparency, as it has multiple electrodes in one cell. Therefore, it can be used as a transparent display. In this paper, we explain the structure and driving method of a transparent electronic paper display, and then propose a control method of transmittance. Subsequently, we verify the theory by measuring the transmittance via experiment. Thus, by changing the manner of applying the voltage to three lower electrodes and one upper electrode, transmittance in eight cases could be realized. It was confirmed that the transmittance derived from the experiment could be controlled from a minimum of 6.75% to a maximum of 71.18%.

원자층증착법을 이용한 수소 생성용 광전기화학 전극 소재 개발 동향 (Recent Developments in H2 Production Photoelectrochemical Electrode Materials by Atomic Layer Deposition)

  • 한정환
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.60-68
    • /
    • 2018
  • The design and fabrication of photoelectrochemical (PEC) electrodes for efficient water splitting is important for developing a sustainable hydrogen evolution system. Among various development approaches for PEC electrodes, the chemical vapor deposition method of atomic layer deposition (ALD), based on self-limiting surface reactions, has attracted attention because it allows precise thickness and composition control as well as conformal coating on various substrates. In this study, recent research progress in improving PEC performance using ALD coating methods is discussed, including 3D and heterojunction-structured PEC electrodes, ALD coatings of noble metals, and the use of sulfide materials as co-catalysts. The enhanced long-term stability of PEC cells by ALD-deposited protecting layers is also reviewed. ALD provides multiple routes to develop improved hydrogen evolution PEC cells.

Numerical Investigation of RF Pulsing Effect on Ion Energy Distributions at RF-biased Electrodes

  • Kwon, Deuk-Chul;Song, Mi-Young;Yoon, Jung-Sik
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.265-272
    • /
    • 2014
  • The ion energy distributions (IEDs) arriving at a substrate strongly affect the etching rates in plasma etching processes. In order to determine the IEDs accurately, it is important to obtain the characteristics of radio frequency (rf) sheath at pulsed rf substrates. However, very few studies have been conducted to investigate pulsing effect on IEDs at multiple rf driven electrodes. Therefore, in this work, we extended previous one-dimensional dynamics model for pulsed-bias electrodes. We obtained the IEDs using the developed rf sheath model and observed that numerically solved IEDs are in a good agreement with the experimental results.

다수의 전기장 분포가 생성되는 단일 미세유로를 이용한 폐암세포 전기천공 및 활성도 분석칩 (Electroporation and Viability Monitoring Chip for Lung Cancer Cells in Single Channel with Multiple Electric Field Zones)

  • 김민지;김태윤;조영호
    • 대한기계학회논문집B
    • /
    • 제36권9호
    • /
    • pp.901-905
    • /
    • 2012
  • 본 논문에서는 다수의 전기장 분포가 생성되는 단일 미세유로를 이용한 폐암세포 전기천공 및 활성도 분석칩을 제안하였다. 종래의 세포 전기천공 분석칩은 다수의 전기장 분포를 형성하기 위해 다수의 전극패턴 또는 다수의 미세유로를 필요로 하여 구조가 복잡하였다. 반면, 제안된 세포 전기천공 및 활성도 분석칩은 한 쌍의 전극 사이에서 계단 형상으로 폭이 변화하는 단일 미세유로를 이용하여 다수의 전기장 분포를 형성함으로써 간단한 구조로 세포 전기천공 및 활성도를 분석할 수 있다. 제안된 세포 전기천공 및 활성도 분석칩은 0.3kV/cm에서 0.5kV/cm까지 5단계의 전기장이 발생되도록 설계하였다. A549와 H23의 두 종류의 비소세포 폐암세포주를 이용한 성능실험 결과, 활성을 유지하면서 전기천공된 세포의 비율이 0.4kV/cm의 전기장에서 각각 $26.6{\pm}0.7%$$51.4{\pm}3.0%$로 가장 높은 값을 보였다. 제안된 세포 전기천공 및 활성도 분석칩은 세포의 형질주입 연구를 위한 집적화된 세포칩으로 응용될 수 있다.

이온선택성 전극을 이용한 토양추출물의 질산 및 칼륨이온 측정 (Sensing Nitrate and Potassium Ions in Soil Extracts Using Ion-Selective Electrodes)

  • 김학진
    • Journal of Biosystems Engineering
    • /
    • 제31권6호
    • /
    • pp.463-473
    • /
    • 2006
  • Automated sensing of soil macronutrients would allow more efficient mapping of soil nutrient spatial variability for variable-rate nutrient management. The capabilities of ion-selective electrodes for sensing macronutrients in soil extracts can be affected by the presence of other ions in the soil itself as well as by high concentrations of ions in soil extractants. Adoption of automated, on-the-go sensing of soil nutrients would be enhanced if a single extracting solution could be used for the concurrent extraction of multiple soil macronutrients. This paper reports on the ability of the Kelowna extractant to extract macronutrients (N, P, and K) from US Corn Belt soils and whether previously developed PVC-based nitrate and potassium ion-selective electrodes could determine the nitrate and potassium concentrations in soil extracts obtained using the Kelowna extractant. The extraction efficiencies of nitrate-N and phosphorus obtained with the Kelowna solution for seven US Corn Belt soils were comparable to those obtained with IM KCI and Mehlich III solutions when measured with automated ion and ICP analyzers, respectively. However, the potassium levels extracted with the Kelowna extractant were, on average, 42% less than those obtained with the Mehlich III solution. Nevertheless, it was expected that Kelowna could extract proportional amounts of potassium ion due to a strong linear relationship ($r^2$ = 0.96). Use of the PVC-based nitrate and potassium ion-selective electrodes proved to be feasible in measuring nitrate-N and potassium ions in Kelowna - soil extracts with almost 1 : 1 relationships and high coefficients of determination ($r^2$ > 0.9) between the levels of nitrate-N and potassium obtained with the ion-selective electrodes and standard analytical instruments.

부위별 생체 전기 임피던스법을 이용한 체성분 분석에 관한 연구 (Segmental Bioelectrical Impedance Analysis(SBIA) for Determining Body Composition)

  • 차기철;손정민;김기진;최승훈
    • 대한지역사회영양학회지
    • /
    • 제2권2호
    • /
    • pp.179-186
    • /
    • 1997
  • A new bioelectrical impedance method has been developed and evaluated. The electrodes; were made of stainless steel and electrical interfaces were created by an upright subject gripping hand electrodes and stepping onto foot electrodes. Eight tactile electrodes were in contact with surfaces of both hands and feet; thumb, palm and fingers, front sole, and rear sole. Automatic on-off switches were used to change current pathways and to measure voltage differences for target segments. Segmental body resistances and whole body resistance(RWHOLE)were measured in 60 healthy subjects. Segmental resistances of right arm(RRA), left arm(RLA), trunk(RT), right leg(RRL) and left leg(RLL)were310.0$\pm$61.6$\Omega$, 316.9$\pm$64.6$\Omega$, 25.1$\pm$3.4$\Omega$, 236.8$\pm$31.2$\Omega$ and 237.6$\pm$30.4$\Omega$, respectively. Individual segmental impedance indexes(Ht2/RRA, Ht2/RT, and Ht2 /RLA) were closely related to lean body mass(LBM)as measured by densitometry ranged from r=0.925 to 0.960. Ht2/(RRA+RT+RLA) predicted LBM slightly better(r=0.969) than the traditional index, Ht2/RWHOLE(r=0.964), supporting the accuracy of the segmental measurement. A multiple regression equation utilizing Ht2/RRA, Ht2/RT and Ht2/RRL predicted LBM with r=0.971. Ht2/RRA term of the regression contributed to more than 40$\%$ of the LBM prediction, indicating that lean mass of arm represented whole body LBM more closely than other body segments. The new bioimpedance method was characterized by upright posture, eight tactile electrodes, segmental measurements and utilization of electronic switches in comparison with the traditional method. The measurement with this new method was extremely reproducible, quick and easy to use.

  • PDF

환형 배치된 코로나 전극에 의한 이온풍 발생 특성 (The Characteristics of the Ionic Wind Generation with Corona Electrodes Installed in Form of the Ring)

  • 김진규;정재승
    • 조명전기설비학회논문지
    • /
    • 제28권2호
    • /
    • pp.54-59
    • /
    • 2014
  • The electric power can be converted into the mechanical power by a corona discharge system. This way has not stronger force than a electric motor. But it has been applied in various industrial fields because of many advantages, no moving parts, smaller noise, simpler structure, minimizing et al. In this paper, corona discharge system with multiple corona electrode installed in form of the ring, has been studied by focusing on the electrical and mechanical characteristics. Intensity of the corona discharge depends on applied electric field, and electric field is related to the applied voltage, discharge gap spacing(s), distance between each corona electrodes(d). As a result, in the case d/s=0.9, most intensive discharge occurred in this experiments. In the region of d/s<0.9, ionic wind velocity has saturation value in spite of decreasing corona current, because each ion velocities increase by the increasing electric field.

Dynamic analysis of magnetorheological elastomer sandwich MEMS sensor under magnetic field

  • Akhavan, Hossein;Ehyaei, Javad;Ghadiri, Majid
    • Smart Structures and Systems
    • /
    • 제29권5호
    • /
    • pp.705-714
    • /
    • 2022
  • In this paper, the effect of magnetic field on the vibration behavior of a Magnetorheological elastomer (MRE) sandwich MEMS actuated by electrostatic actuation with conductive skins are examined within the multiple scales (MMS) perturbation method. Magnetorheological smart materials have been widely used in vibration control of various systems due to their mechanical properties change under the influence of different magnetic fields. To investigate the vibrational behavior of the movable electrode, the Euler-Bernoulli beam theory, as well as Hamilton's principle is used to derive the equations and the related boundary conditions governing the dynamic behavior of the system are applied. The results of this study show that by placing the Magnetorheological elastomer core in the movable electrode and applying different magnetic fields on it, its natural vibrational frequency can be affected so that by increasing the applied magnetic field, the system's natural frequency increases. Also, the effect of various factors such as the electric potential difference between two electrodes, changes in the thickness of the core and the skins, electrode length, the distance between two electrodes and also change in vibration modes of the system on natural frequencies have been investigated.

Studies on Multi-step Addition of NMP in (LiNi0.80Co0.15Al0.05) (NCA) Cathode Slurry Preparation and its Rheological, Mechanical Strength and Electrochemical Properties for Li-ion Cells

  • Vasudevarao Pasala;Satyanarayana Maddukuri;V. Sethuraman;Rekha Lankipalli;Devi Gajula;Venkateswarlu Manne
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.262-271
    • /
    • 2023
  • For electrode stability and the electrochemical performance of the Li-ion cell, it is essential that the active ingredients and unique additives in the polymer binder be well dispersed with the solvent-based slurry. The efficient procedure used to create the slurry affects the rheological characteristics of the electrode slurry. When successively adding different steps of Nmethyl-2-pyrrolidone (NMP) solvent to the cathode composition, it is evenly disseminated. The electrochemical performance of the Li-ion cells and the electrodes made with slurry formed by single step and multiple steps of addition of NMP solvent are examined. To preform rheological properties of cathode electrode slurry on Ni-rich Lithium Nickel-Cobalt-Aluminum Oxide (LiNi0.80Co0.15Al0.05) (NCA). Also, we investigate different step addition of electrode formation and mechanical strength characterization like peel strength. According to the EIS study, a multi-step electrode slurry has lower internal resistance than a single-step electrode slurry, which results in better electrical characteristics and efficiency. Further, microstructure of electrodes is obtained electrochemical performance in the 18650 cylindrical cells with targeted capacity of 1.5 Ah. The slurry of electrodes prepared by single step and multiple steps of addition of NMP solvent and its effect on the fabrication of 1.5 Ah cells. A three-step solvent addition on slurry has been found to be a lower internal resistance than a single-step electrode slurry as confirmed by the EIS analysis, yielding improved electrical properties and efficiency.