Browse > Article
http://dx.doi.org/10.5307/JBE.2006.31.6.463

Sensing Nitrate and Potassium Ions in Soil Extracts Using Ion-Selective Electrodes  

Kim, H.J. (National Institute of Agricultural Engineering)
Sudduth Kenneth A. (USDA-ARS Cropping Systems and Water Quality Research Unit)
Hummel John W. (USDA-ARS Cropping Systems and Water Quality Research Unit)
Publication Information
Journal of Biosystems Engineering / v.31, no.6, 2006 , pp. 463-473 More about this Journal
Abstract
Automated sensing of soil macronutrients would allow more efficient mapping of soil nutrient spatial variability for variable-rate nutrient management. The capabilities of ion-selective electrodes for sensing macronutrients in soil extracts can be affected by the presence of other ions in the soil itself as well as by high concentrations of ions in soil extractants. Adoption of automated, on-the-go sensing of soil nutrients would be enhanced if a single extracting solution could be used for the concurrent extraction of multiple soil macronutrients. This paper reports on the ability of the Kelowna extractant to extract macronutrients (N, P, and K) from US Corn Belt soils and whether previously developed PVC-based nitrate and potassium ion-selective electrodes could determine the nitrate and potassium concentrations in soil extracts obtained using the Kelowna extractant. The extraction efficiencies of nitrate-N and phosphorus obtained with the Kelowna solution for seven US Corn Belt soils were comparable to those obtained with IM KCI and Mehlich III solutions when measured with automated ion and ICP analyzers, respectively. However, the potassium levels extracted with the Kelowna extractant were, on average, 42% less than those obtained with the Mehlich III solution. Nevertheless, it was expected that Kelowna could extract proportional amounts of potassium ion due to a strong linear relationship ($r^2$ = 0.96). Use of the PVC-based nitrate and potassium ion-selective electrodes proved to be feasible in measuring nitrate-N and potassium ions in Kelowna - soil extracts with almost 1 : 1 relationships and high coefficients of determination ($r^2$ > 0.9) between the levels of nitrate-N and potassium obtained with the ion-selective electrodes and standard analytical instruments.
Keywords
Soil nutrient sensing; Nitrate; Potassium; Kelowna extractant; Ion-selective electrodes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nielson, H. J. and E. H. Hansen. 1976. New nitrate ionselective electrodes based quaternary ammonium compounds in nonporous polymer membranes. Anal. Chim. Acta 85(1): 1-16   DOI   ScienceOn
2 Oien, A. and A. R. Selmer-Olsen. 1969. Nitrate determination in soil extracts with the nitrate electrode. Analyst 94:888-894   DOI
3 Sudduth, K. A., J. W. Humrnel and S. J. Birrell. 1997. Sensors for site-specific management. In: The State of Site-Specific Management for Agriculture, ed(s). F. J. Pierce and E. J. Sadler, pp.183-210. Madison, Wisc.: ASA-CSSA-SSSA
4 Tsukada, K., M. Sebata, Y. Miyahara and H. Miyagi. 1989. Long-life multiple-ISFETs with polymeric gates. Sensors Actuators 18(3-4):329-336   DOI   ScienceOn
5 Van Lierop, W. 1986. Soil nitrate determination using the Kelowna multiple element extract. Comm. Soil Sci. Plant Anal. 17(12):1311-1329   DOI   ScienceOn
6 Van Lierop, W. 1988. Determination of available phosphorus in acid and calcareous soils with the Kelowna multiple-element extractant. Soil Sci. 146:284-291   DOI
7 Van Lierop, W. and N. A. Gough. 1989. Extraction of potassium and sodium from acid and calcareous soils with the Kelowna multiple element extractant. Can. J. Soil Sci. 69: 235-242   DOI
8 Haby, V. A., M. P. Russelle and E. O. Skogley. 1990. Testing soils for potassium, calcium, and magnesium. In: Soil Testing and Plant Analysis, ed(s). R. L. Westerman, pp.181-221. Madison, Wisc.: SSSA
9 Hansen, E. H., A. K. Ghose and J. Ruzicka. 1977. Flow injection analysis of environmental samples for nitrate using an ion-selective electrode. Analyst 102:705-713   DOI
10 Kim, H. J., J. W. Humrnel and S. J. Birrell. 2006. Evaluation of nitrate and potassium ion-selective membranes for soil macronutrient sensing. Trans. ASABE 49(3):597-606   DOI
11 Morf, W. E., K. Seiler, B. Rusterholz and W. Simon. 1990. Design of a calcium-selective optode membrane based on neutral ionophore. Anal. Chem. 62:738-742   DOI
12 Knoll, M., K. Cammann, C. Dumschat, M. Borchardt and G. Hogg. 1994. Microfibre matrix-supported ion-selective PVC membranes. Sensors Actuators B 20(1): 1-5   DOI   ScienceOn
13 Li, S. and K. A. Smith. 1984. The rapid determination of nitrate at low concentrations in soil extracts: comparison of ion selective electrode with continuous-flow analysis. Comm. Soil Sci. Plant Anal. 15(12): 1437-1451   DOI
14 Mehlich, A. 1984. Mehlich III soil test extractant: A modification of Mehlich II extractant. Comrn. Soil Sci. Plant Anal. 15(12):1409-1416   DOI
15 Glazier, S. A. and M. A. Arnold. 1988. Phosphate-selective polymer membrane electrode. Anal. Chem. 60:2540-2542   DOI   ScienceOn
16 Glazier, S. A. and M. A. Arnold. 1991. Selectivity of membrane electrodes based on derivatives of dibenzyltin dichloride. Anal. Chem. 63(8):754-759   DOI   ScienceOn
17 Adamchuk, V. I. 2002. Feasibility of on-the-go mapping of soil nitrate and potassium using ion-selective electrodes. ASAE Paper No. 02-1183. St. Joseph, Mich.: ASAE
18 Adamchuk, V. I., J. W. Hummel, M. T. Morgan and S. K. Upadhyaya. 2004. On-the-go soil sensors for precision agriculture. Comp. Elect. Agric. 44:71-91   DOI   ScienceOn
19 Ammann, D. 1986. Ion-Selective Microelectrodes: Principles, Design and Application. Berlin, Germany: Springer-Verlag
20 Birrell, S. J. and J. W. Hurnmel. 2000. Membrane selection and ISFET configuration evaluation for soil nitrate sensing. Trans. ASAE 43(2): 197-206
21 Black, A. S. and S. A. Waring. 1978. Nitrate determination in an oxisol using $K_2SO_4$ extraction and the nitrate specific electrode. Plant Soil 49:207-211   DOI
22 Brown, J. R., (ed.) 1998. Recommended Chemical Soil Test Procedures for the North Central Region. Columbia, Mo.: Missouri Agricultural Experiment Station, Univ. of Missouri
23 Buchholz, D. D., J. R. Brown, J. D. Garret, R. G. Hanson and H. N. Wheaton. 1983. Soil Test Interpretations and Recommendations Handbook. Revised 12/92 edition. Columbia, Mo.: University of Missouri, Department of Agronomy
24 Carey, C. M. and W. B. Riggan. 1994. Cyclic polyamine ionophores for use in a dibasic-phosphate-selective electrode. Anal. Chem. 66(21):3587-3591   DOI   ScienceOn
25 Farrell, R. E. and A. D. Scott. 1987. Ion-selective electrode determinations of exchangeable potassium in soils. Soil Sci. Soc. Am. J. 51:594-598   DOI   ScienceOn
26 Gallardo, J., S. Alegret and M. D. Valle. 2004. A flow-injection electronic tongue based on potentiometric sensors for the determination of nitrate in the presence of chloride. Sensors Actuators B101:72-80
27 Blackmer, A. M., D. Pottker, M. E. Cerrato and J. Webb. 1989. Correlations between soil nitrate concentrations in late spring and corn yields in lowa. J. Prod. Agric. 2(2):103-109   DOI
28 Brouder, S. M., M. Thom, V. I. Adamchuck and M. T. Morgan. 2003. Potential uses of ion-selective potassium electrodes in soil fertility management. Comrn. Soil Sci. Plant Anal. 34:2699-2726   DOI   ScienceOn
29 Dahnke, W. C. 1971. Use of the nitrate specific ion electrode in soil testing. Soil. Sci. Plant Anal. 2(2):73-84   DOI
30 Gee, G. W. and D. Or. 2002. Particle-size analysis. In: Methods of soil analysis: Part 4 - Physical methods, ed(s). J. H. Dane and G. C. Topp, pp.255-293. Madison, Wisc: SSSA
31 Artigas, J., A. Beltran, C. Jimenez, A. Baldi, R. Mas, C. Dominguez and J. Alonso. 2001. Application of ion selective field effect transistor based sensors to soil analysis. Comp. Elect. Agric. 31 (3):281-293   DOI   ScienceOn