• 제목/요약/키워드: Multiple constraints

검색결과 537건 처리시간 0.027초

An energy-based vibration model for beam bridges with multiple constraints

  • Huang, Shiping;Zhang, Huijian;Chen, Piaohua;Zhu, Yazhi;Zuazua, Enrique
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.41-53
    • /
    • 2022
  • We developed an accurate and simple vibration model to calculate the natural frequencies and their corresponding vibration modes for multi-span beam bridges with non-uniform cross-sections. A closed set of characteristic functions of a single-span beam was used to construct the vibration modes of the multi-span bridges, which were considered single-span beams with multiple constraints. To simplify the boundary conditions, the restraints were converted into spring constraints. Then the functional of the total energy has the same form as the penalty method. Compared to the conventional penalty method, the penalty coefficients in the proposed approach can be calculated directly, which can avoid the iteration process and convergence problem. The natural frequencies and corresponding vibration modes were obtained via the minimum total potential energy principle. By using the symmetry of the eigenfunctions or structure, the matrix size can be further reduced, which increases the computational efficiency of the proposed model. The accuracy and efficiency of the proposed approach were validated by the finite element method.

An IMM Approach for Tracking a Maneuvering Target with Kinematic Constraints Based on the Square Root Information Filter

  • Kim, Kyung-Youn;Kim, Joong-Soo
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권2호
    • /
    • pp.39-44
    • /
    • 1996
  • An efficient interacting multiple mode(IMM) approach for tracking a maneuvering target with kinematic constraints is described based on the square root information filter(SRIF). The SRIF is employed instead of the conventional Kalman filter since it exhibits more efficient features in handling the kinematic constraints and improved numerical characteristics. The kinematic constraints are considered in the filtering process as pseudomeasurements where the degree of uncertainty is represented by the magnitude of the pseudomeasurement noise variance. The Monte Carlo simulations for the constant speed, maneuvering target are provided to demonstrate the improved tracking performance of the proposed algorithm.

  • PDF

성능 제약 조건 하에서의 SAMBA 형 MPSoC 버스 구조 최적화 (SAMBA Type MPSoC Bus Architecture Optimization under Performance Constraints)

  • 김홍염;정성철;신현철
    • 대한전자공학회논문지SD
    • /
    • 제47권1호
    • /
    • pp.94-101
    • /
    • 2010
  • 최근 여러 개의 프로세서 및 메모리를 한 개의 칩에 구현하여 다양한 알고리즘을 구현하는 Multi-Processor System-on-Chip (MPSoC) 설계가 가능해지면서, 프로세서 간 interconnection을 최적화 하는 문제가 중요해졌다. Application에 따라서 최적 interconnection이 다르기 때문에, 체계적으로 다양한 사양에 적합한 interconnection 구조를 설계하는 방법이 필요하다. 본 논문에서는 프로세서가 4~16개 정도인 MPSoC application에서는 버스 구조가 적절한 점에 주목하여, 간단한 arbitration이 특징인 Single Arbitration Multiple Bus Accesses (SAMBA) 형 버스 구조를 이용하여, 다양한 application에 대한 성능 제약 조건을 만족하는 저비용 버스 구조를 찾는 새로운 방법을 제안하였다. 다양한 Application을 실험에 이용하여, 제안한 방법으로 성능 제약 조건 내에서 저비용 버스 구조를 찾았다. 같은 성능으로 최적화 전의 구조에 비해서 버스 분할에 필요한 로직 사용이 경우에 따라 약 50% 이상 감소한다. 또한 다양한 성능 조건에 대한 저비용 버스 구조를 찾을 수 있었다.

영 공간 분해 방법을 이용한 다중 협동로봇의 모빌리티와 가속도 조작성 해석 (Analysis of Acceleration Bounds and Mobility for Multiple Robot Systems Based on Null Space Analysis Method)

  • 이필엽;전봉환;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.497-504
    • /
    • 2006
  • This paper presents a new technique that derives the dynamic acceleration bounds of multiple cooperating robot systems from given individual torque limits of robots. A set of linear algebraic homogeneous equation is derived from the dynamic equations of multiple robots with friction contacts. The mobility of the robot system is analyzed by the decomposition of the null space of the linear algebraic equation. The acceleration bounds of multiple robot systems are obtained from the joint torque constraints of robots by the medium of the decomposed null space. As the joint constraints of the robots are given in the infinite norm sense, the resultant acceleration bounds of the systems are described as polytopes. Several case studies are presented to validate the proposed method in this paper.

다중변위 구속조건하에서 고층철골조의 이산형 최적화 (Discrete Optimization of Tall Steel Frameworks under Multiple Drift Constraints)

  • 이한주;김호수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.254-261
    • /
    • 1998
  • This study presents a discrete optimization of tall steel buildings under multiple drift constraints using a dual method. Dual method can replace the primary optimization problem with a sequence of approximate explicit subproblems. Since each subproblem is convex and separable, it can be efficiently solved by using a dual formulation. Specifically, this study considers the discrete-optimization problem due to the commercial standard steel sections to select member sizes. The results by the proposed method will be compared with those of the conventional optimality criteria method

  • PDF

MODIFIED SIMULATED ANNEALING ALGORITHM FOR OPTIMIZING LINEAR SCHEDULING PROJECTS WITH MULTIPLE RESOURCE CONSTRAINTS

  • Po-Han Chen;Seyed Mohsen Shahandashti
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.777-786
    • /
    • 2007
  • This paper presents a modified simulated annealing algorithm to optimize linear scheduling projects with multiple resource constraints and its effectiveness is verified with a proposed problem. A two-stage solution-finding procedure is used to model the problem. Then the simulated annealing and the modified simulated annealing are compared in the same condition. The comparison results and the reasons of improvement by the modified simulated annealing are presented at the end.

  • PDF

An inequality constraints based method for inverse kinematics of redundant manipulators

  • sung, Young-Whee;Cho, Dong-Kwon;Chung, Myung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.486-490
    • /
    • 1993
  • In addtion to a basic motion task, redundant manipulators can achieve some additional tasks by optimizing proper performance criteria. Some of performance criteria can be transformed to inequality constraints. So the redundancy resolving problem can be reformulated as a local optimization problem with equality constraints for the end effector and inequality constraints for some performance criteria. In this article, we propose a method for solving the inverse kinematics of a manipulator with redundancy using the Kuhn-Tucker theorem to incorporate inequality constraints. With proper choice of inequality constraints, the proposed method gives a way of optimizing multiple criteria in redundant manipulators.

  • PDF

특징형상 위치 결정을 위한 형상 구속조건의 이용 (Using Geometric Constraints for Feature Positioning)

  • Kim, S.H.;Lee, K.W.
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.84-93
    • /
    • 1996
  • This paper describes the development of new feature positioning method which embedded into the top-down assembly modeling system supporting conceptual design. In this work, the user provides the geometric constraints representing the position and size of features, then the system calculates their proper solution. The use of geometric constraints which are easy to understand intuitively enables the user to represent his design intents about geometric shapes, and enables the system to propagate the changes automatically when some editing occurs. To find the proper solution of given constraints, the Selective Solving Method in which the redundant or conflict equations are detected and discarded is devised. The validity of feature shapes satisfying the constraints can be maintained by this technique, and under or over constrained user-defined constraints can also be estimated. The problems such as getting the initial guess, controlling the multiple solutions, and dealing with objects of rotational symmetry are also resolved. Through this work, the feature based modeling system can support more general and convenient modeling method, and keeps the model being valid during modifying models.

  • PDF

Multiple Constrained Optimal Experimental Design

  • Jahng, Myung-Wook;Kim, Young Il
    • Communications for Statistical Applications and Methods
    • /
    • 제9권3호
    • /
    • pp.619-627
    • /
    • 2002
  • It is unpractical for the optimal design theory based on the given model and assumption to be applied to the real-world experimentation. Particularly, when the experimenter feels it necessary to consider multiple objectives in experimentation, its modified version of optimality criteria is indeed desired. The constrained optimal design is one of many methods developed in this context. But when the number of constraints exceeds two, there always exists a problem in specifying the lower limit for the efficiencies of the constraints because the “infeasible solution” issue arises very quickly. In this paper, we developed a sequential approach to tackle this problem assuming that all the constraints can be ranked in terms of importance. This approach has been applied to the polynomial regression model.

전시 공병장비 할당 및 운용 모형 (A War-time Engineering Equipment's Assignment and Operation Model)

  • 이재형;이문걸
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.294-303
    • /
    • 2023
  • During wartime, the operation of engineering equipment plays a pivotal role in bolstering the combat prowess of military units. To fully harness this combat potential, it is imperative to provide efficient support precisely when and where it is needed most. While previous research has predominantly focused on optimizing equipment combinations to expedite individual mission performance, our model considers routing challenges encompassing multiple missions and temporal constraints. We implement a comprehensive analysis of potential wartime missions and developed a routing model for the operation of engineering equipment that takes into account multiple missions and their respective time windows of required start and completion time. Our approach focused on two primary objectives: maximizing overall capability and minimizing mission duration, all while adhering to a diverse set of constraints, including mission requirements, equipment availability, geographical locations, and time constraints.