• Title/Summary/Keyword: Multiple Representations

Search Result 98, Processing Time 0.024 seconds

Visual Representations for Improving Proportional Reasoning in Solving Word Problems (비례 추론을 돕는 시각적 모델에 대하여: 초등 수학 교과서의 비례식과 비례배분 실생활 문제를 대상으로)

  • Yim, Jae Hoon;Lee, Hyung Sook
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.2
    • /
    • pp.189-206
    • /
    • 2015
  • There has been a recurring call for using visual representations in textbooks to improve the teaching and learning of proportional reasoning. However, the quantity as well as quality of visual representations used in textbooks is still very limited. In this article, we analyzed visual representations presented in a Grade 6 textbook from two perspectives of proportional reasoning, multiple-batches perspective and variable-parts perspective, and discussed the potential of the double number line and the double tape diagram to help develop the idea 'things covary while something stays the same', which is critical to reason proportionally. We also classified situations that require proportional reasoning into five categories and provided ways of using the double number line and the double tape diagram for each category.

CR-M-SpanBERT: Multiple embedding-based DNN coreference resolution using self-attention SpanBERT

  • Joon-young Jung
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.35-47
    • /
    • 2024
  • This study introduces CR-M-SpanBERT, a coreference resolution (CR) model that utilizes multiple embedding-based span bidirectional encoder representations from transformers, for antecedent recognition in natural language (NL) text. Information extraction studies aimed to extract knowledge from NL text autonomously and cost-effectively. However, the extracted information may not represent knowledge accurately owing to the presence of ambiguous entities. Therefore, we propose a CR model that identifies mentions referring to the same entity in NL text. In the case of CR, it is necessary to understand both the syntax and semantics of the NL text simultaneously. Therefore, multiple embeddings are generated for CR, which can include syntactic and semantic information for each word. We evaluate the effectiveness of CR-M-SpanBERT by comparing it to a model that uses SpanBERT as the language model in CR studies. The results demonstrate that our proposed deep neural network model achieves high-recognition accuracy for extracting antecedents from NL text. Additionally, it requires fewer epochs to achieve an average F1 accuracy greater than 75% compared with the conventional SpanBERT approach.

The Impact of Argumentation-based General Chemistry Laboratory Programs on Multimodal Representation and Embeddedness in University Students' Science Writing (논의가 강조된 일반화학실험이 대학생들의 글쓰기에서 나타난 다중 표상 및 다중 표상의 내재성에 미치는 영향)

  • Nam, Jeong-Hee;Cho, Dong-Won;Lee, Hye-Sook
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.6
    • /
    • pp.931-941
    • /
    • 2011
  • This study aimed to examine the effects of argument-based chemistry laboratory investigations using the Science Writing Heuristic (SWH) approach on students' use and embedding of multimodal representations in summary writing. Participants of this study were thirty-nine freshman students majoring in science education at a National University in Korea. Argument-based chemistry laboratory investigations using the SWH approach were implemented for twenty-three students enrolled in one cohort, and the traditional chemistry laboratory teaching was implemented for 16 students enrolled in the other cohort. Summary writing samples were collected from students before and after the implementation. Summary writing samples produced by students were examined using an analysis framework for examining the use and embeddedness of multimodal representations. Summary writing was categorized into one of verbal mode, symbolic mode, and visual mode. With regard to the embedding of multi-modal representations, summary writing samples were analyzed in terms of 'constructing understanding,' 'integrating multiple modes,' 'providing valid claims and evidence,' and 'representing multiple modes.' Data analysis shows that the students of the SWH group were better at utilizing and embedding multimodal representations in summary writing as they provided evidence supporting their claims. This study provides important implications on pre-service science teacher education.

The Instructional Effect of Varying Visuals in Drawing and Writing Applied to Learning with Multiple Representations (다중 표상 학습에 적용한 그리기와 쓰기에서 시각정 정보의 형태에 따른 교수 효과)

  • Kang, Hun-Sik;Lee, Sung-Mi;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.3
    • /
    • pp.367-375
    • /
    • 2006
  • This study investigated the effects of varying visuals in drawing and writing as methods to assist students in connecting and integrating multiple external representations provided in learning the particulate nature of matter. Seventh graders (N=233) at a coed middle school were assigned to control, static drawing (SO), dynamic drawing (DD), static writing (SW), and dynamic writing (DW) groups. The students were taught about "Boyle's Law" and "Charles's Law" for two class periods. Two-way ANCOVA results revealed that the scores of a conception test for the two drawing (SD, DD) groups and the two writing (SW, DW) groups were significantly higher than those for the control group. Within the writing groups, students of lower spatial visualization ability in the DW group scored significantly higher than those in the SW group. However, no significant differences were found in the scores of the conception test for the two drawing (SD, DD) groups regardless of students' visualization ability. Researchers also found that most students in both DD and DW groups had respectively positive perceptions of dynamic visuals in drawing or writing.

The Influence of Time to Draw Students' Mental Models and Students' Field Dependence-Independence in Drawing in Relation to Learning with Multiple Representations (다중 표상 학습에 적용한 그리기에서 학생들의 정신 모형을 그리는 시기 및 장의존성.장독립성에 따른 효과)

  • Kang, Hun-Sik;Kwack, Jin-Ha;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.2
    • /
    • pp.191-199
    • /
    • 2006
  • This study investigated the influence of time to draw students' mental models and students' field dependence-independence on learning the particulate nature of matter with multiple representations. Seventh graders (N=295) at two middle schools were assigned to control, after-drawing, and before-drawing groups. The students learned "Boyle's Law" and "Charles's Law" for two class periods. Results revealed that the scores of a test on conceptual understanding for the two drawing groups were significantly higher than those for the control group. However, there was no significant interaction between the instruction and students' field dependence-independence in the scores of the test on conceptual understanding. In 'novelty' on a situational interest test, field independent students in the two drawing groups scored significantly higher than those in the control group. The scores for field independent students in each group were similar, while field dependent students in the before-drawing group scored lower than those in the control and after-drawing groups in 'attention demand' on the situational interest test. It was found that most students positively perceived after-drawing or before-drawing, but field independent students in the before-drawing group were more apprehensive about the activities than those in the after-drawing group.

The Effects of Dynamic Visual by Students' Field Independence-Dependence on Learning with Multiple Representations: Focused on Connecting Errors and Conceptual Understanding (다중표상학습에서 학생들의 장독립성.장의존성에 따른 동화상의 효과: 연계 오류와 개념 이해를 중심으로)

  • Noh, Tae-Hee;Moon, Se-Jeong;Lee, Jong-Hyun;Seo, Hyun-Ju;Kang, Hun-Sik
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.2
    • /
    • pp.156-167
    • /
    • 2009
  • This study investigated the effects of dynamic visual on students' field independence-dependence on connecting errors and conceptual understanding in learning chemistry concepts with multiple representations. Seventh graders (N=123) at a co-ed middle school were assigned to a static visual (SV) group learning with text and static visual, and a dynamic visual (DV) group learning with text and dynamic visual. The students then learned 'Boyle's Law' and 'Charles's Law' for two class periods. Results revealed that the percentages of the DV group were lower than those of the SV group on connecting errors. However, the percentages of the students' connecting errors were still high regardless of their field independence-dependence. There was a little different tendency in the percentages of connecting errors between the two groups by students' field independence-dependence according to the types of connecting errors. The scores of the DV group were significantly higher than those of the SV group in a test on conceptual understanding. However, there was no significant interaction between the instruction and the students' field independence-dependence. Educational implications of these findings are discussed.

The Influences of Small Group Discussion and Students' Visual Learning Style on Learning with Multiple Representations Using Drawing and Writing: Focused on Chemical Concepts (소집단 토론과 시각적 학습 양식이 그리기와 쓰기를 활용한 다중 표상 학습에 미치는 영향: 화학 개념을 중심으로)

  • Kang, Hun-Sik;Sung, Da-Yeon;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.1
    • /
    • pp.28-36
    • /
    • 2007
  • This study investigated the influences of small group discussion and students' visual learning style in learning chemical concepts with drawing and writing as methods to assist students in connecting and integrating multiple external representations. Seventh graders (N=449) at a coed middle school were assigned to individual drawing (ID), pair drawing (PD), individual writing (IW), and pair writing (PW) groups. All students learned "Boyle's Law" and "Charles's Law" for two class periods. Analyses of the results revealed that the students in the PD group, regardless of students' visual learning style, scored significantly higher than those in the ID group in a conception test. The scores of the students with strong visual learning preference in the PW group were significantly higher than those in the IW group in the conception test, while the scores of the students with weak visual learning preference were not significantly different between the two groups. Although the conception test scores of the PD group were higher than those of the PW group, the difference was relatively small. It was found that most students in both PD and PW groups perceived pair drawing and pair writing positively upon cognitive and motivational aspects.

Impact of Hand-Held Technology for Understanding Linear Equations and Graphs

  • Kwon, Oh-Nam
    • Research in Mathematical Education
    • /
    • v.6 no.1
    • /
    • pp.81-96
    • /
    • 2002
  • This article describes a research project that examined the impact of hand-held technology on students' understanding linear equations and graphs in multiple representations. The results indicated that students in the graphing-approach classes were significantly better at the components of interpreting. No significant differences between the graphing-approach and traditional classes were found fur translation, modeling, and algebraic skills. Further, students in the graphing-approach classes showed significant improvements in their attitudes toward mathematics and technology, were less anxious about mathematics, and rated their class as more interesting and valuable.

  • PDF

Implementation of Arithmetic Processor Using Multi-Valued Logic (다치 논리를 이용한 연산기 구현)

  • 양대영;김휘진;박진우;송홍복
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.05a
    • /
    • pp.338-341
    • /
    • 1998
  • This paper presents CMOS full adder design method based on carry-propagation-free addition trees and a circuit technique, so called multiple-valued current-nude(MVCM) circuits. The carry-propagation-free addition method uses a redundant digit sets called redundant positive-digit number representations. The carry-propagation-free addition is by three steps, and the adder can be designed directly and efficiently from the algorithm using WVCM circuit, Also Multiplier can be designed by these adder. We demonstrate the effectiveness of the proposed method through simulation(SPICE).

  • PDF

Product Database Modeling for Collaborative Product Development

  • Do, Nam-Chul;Kim, Hyun;Kim, Hyoung-Sun;Lee, Jae-Yeol;Lee, Joo-Haeng
    • Proceedings of the CALSEC Conference
    • /
    • 2001.08a
    • /
    • pp.591-596
    • /
    • 2001
  • To deliver new products to market in a due time, companies often develop their products with numerous partners distributed around the world. Internet technologies can provide a cheap and efficient basis of collaborative product development among distributed partners. This paper provides a framework and its product database model that can support consistent product data during collaborative product development. This framework consists of four components for representing consistent product structure: the product configuration, assembly structure, multiple representations and engineering changes. A product database model realizing the framework is designed and implemented as a system that supports collaborative works in the areas of product design and technical publication. The system enables participating designers and technical publishers to complete their tasks with shared and consistent product data. It also manages the propagation of engineering changes among different representations for individual participants. The Web technologies introduced in this system enable participants to easily access and operate shared product data in a standardized and distributed computing environment.

  • PDF