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Abstract

This study introduces CR-M-SpanBERT, a coreference resolution (CR) model

that utilizes multiple embedding-based span bidirectional encoder representa-

tions from transformers, for antecedent recognition in natural language

(NL) text. Information extraction studies aimed to extract knowledge from NL

text autonomously and cost-effectively. However, the extracted information

may not represent knowledge accurately owing to the presence of ambiguous

entities. Therefore, we propose a CR model that identifies mentions referring

to the same entity in NL text. In the case of CR, it is necessary to understand

both the syntax and semantics of the NL text simultaneously. Therefore,

multiple embeddings are generated for CR, which can include syntactic and

semantic information for each word. We evaluate the effectiveness of CR-

M-SpanBERT by comparing it to a model that uses SpanBERT as the language

model in CR studies. The results demonstrate that our proposed deep neural

network model achieves high-recognition accuracy for extracting antecedents

from NL text. Additionally, it requires fewer epochs to achieve an average F1

accuracy greater than 75% compared with the conventional SpanBERT

approach.
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1 | INTRODUCTION

Knowledge on the Internet has been accumulated in
large-scale knowledge bases (KBs), such as Yago [1],
Wikidata [2], and DBpedia [3], and existing KBs should
be expanded to include new knowledge. However, large-
scale KBs require considerable effort to expand new
knowledge manually. Therefore, studies have been con-
ducted to extract autonomously subject–predicate–object
(SPO) tuples from natural language (NL) text to add new
knowledge to KBs at a low cost [4]. However, NL

sentences may contain ambiguous entities, such as pro-
nouns; accordingly, the SPO tuples extracted from these
NL sentences cannot be expressed as knowledge because
they may contain these unclear entities. For example, an
SPO tuple (he–elected–president) may be extracted from
the NL sentence “And he was elected President of the
United States 48 years later” in the NL paragraph
“Obama was born in Hawaii in 1961. And he was elected
President of the United States 48 years later.” However,
the SPO tuple (he-elected-president) is not knowledge-
able. Therefore, for the SPO tuple (he–elected–president)
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to become knowledge, it should be converted into an
SPO tuple (Obama–elected–president) using the previous
sentence “Obama was born in Hawaii in 1961.” To
extract meaningful knowledge from an NL sentence, an
ambiguous entity that may be included in the extracted
SPO tuple must be converted to a clear entity. To solve
this problem, coreference resolution (CR) methods have
been studied. CR is the task of determining all mentions
that refer to the same entity in an NL text. For instance, a
cluster of mentions referring to the same entity (Obama
and he) can be generated from the text “Obama was born
in Hawaii in 1961. And he was elected President of the
United States 48 years later.” Therefore, CR is an impor-
tant problem in natural language processing (NLP) tasks
such as information extraction [4], machine transla-
tion [5], and question answering [6]. We propose CR
using a multiple embedding-based span bidirectional
encoder representation from a transformer (CR-M-Span-
BERT) model. The proposed model uses multiple embed-
dings that integrate NL and dependency relation
(DR) embeddings as the input to a deep neural network
(DNN) to improve the accuracy of CR.

The remainder of this paper is organized as follows:
Section 2 describes related works. Section 3 describes the
CR-M-SpanBERT model for an end-to-end CR. Section 4
presents experimental results. Finally, Section 5 presents
the concluding remarks.

2 | RELATED WORKS

CR, which recognizes mentions representing the same
entity in NL text or dialog, is an important and challeng-
ing problem in NLP. Therefore, research on CR has been
extensively conducted in NLP.

The mention-pair model classifies whether two men-
tions of the NL text are coreferent [7, 8]. Soon and others
[9] proposed a learning-based CR model based on
decision-tree induction for noun phrase (NP) mentions to
present potential mention pairs. Ng and others [10] pro-
posed the best-first clustering model, which selects the
NP with the highest cross-referencing probability from
among preceding NPs as an antecedent. Bengtson and
Roth [11] proposed a simple but effective CR model
based on a pairwise model and strong set of features.
However, this paired model has certain limitations. A
transitivity problem may occur because each candidate
antecedent for an anaphora is estimated independently
without considering the others. The problem of expres-
siveness can arise when the pairwise features of two men-
tions alone are insufficient to make a coreference
decision. For example, “Mr. Obama” and “Obama” are

coreferent; however, the model may incorrectly deter-
mine that “Obama” and “she” are coreferent.

The entity-mention model overcomes the limitations
of the mention-pair model. The entity-mention model
determines whether an NP mention is consistent with
the preceding cluster. Bjöorkelund and Kuhn [12] pro-
posed a structured perceptron model for CR using nonlo-
cal features and beam search. Clark and Manning [13]
proposed an entity-centric coreference model to build
incrementally coreference chains using entity-level fea-
tures between clusters of mentions. Wiseman and others
[14] proposed an end-to-end coreference model that uses
recurrent neural networks to represent entity clusters
directly from mentions.

Although the entity-mention model addresses the
weaknesses of the mention-pair model, it does not iden-
tify the most probable antecedents. However, the
mention-ranking model can determine the most probable
candidate antecedents of NP mentions. The mention-
ranking model simultaneously ranks all candidate ante-
cedents of a mention and directly selects the antecedent
with the highest score as the most probable candidate
antecedent. Durrett and Klein [15] proposed a CR model
using a simple and homogeneous feature set to achieve
high performance. Wiseman and others [16] proposed a
simple nonlinear coreference model for learning interme-
diate feature representations for anaphoricity detection
and antecedent ranking using raw nonconjoined features.
Marasovic and others [17] proposed a mention-ranking
model that uses a long short-term memory (LSTM) Sia-
mese network to learn how NP mentions relate to their
antecedents.

Recently, an end-to-end model was proposed that per-
forms both mention detection and coreference prediction.
Lee and others [18] proposed an end-to-end model using
bidirectional LSTM that considers all spans of a document
as potential mentions. Kantor and Globerson [19] pro-
posed an end-to-end model based on bidirectional encoder
representations from transformer (BERT) embeddings that
use entity equalization to represent each mention of a clus-
ter through every mention of the cluster. Joshi and others
[20] proposed an end-to-end model using BERT that con-
siders all spans of a document as potential mentions. Sub-
sequently, Joshi and others [21] proposed a model using
an extended BERT (SpanBERT) to mask spans and train
span boundary representations. Park and others [22] pro-
posed an end-to-end model using BERT for CR. Kirstain
and others [23] proposed a CR model using the Longfor-
mer, as proposed by Beltagy and others [24], without span
representations for simple but efficient coreferencing. To
improve the performance of CR using an end-to-end
DNN, we propose the CR-M-SpanBERT model.
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3 | CR-M-SPANBERT

Various language models (LMs), such as LSTM [18],
BERT [19], SpanBERT [21], T-zero (T0) [25], and multi-
lingual pretrained text-to-text transfer transformer
(mT5) [26], have been utilized to enhance the perfor-
mance of CR. In CR, mention clusters in NL texts are rec-
ognized using the output embeddings of the LM. In this
study, the CR was performed using SpanBERT as the
LM. The use of a larger LM parameter size correlates
with better average F1 performance (average F1 of the
MUC, B3, and CEAFφ4 metrics). For the LMs, LSTM,
BERT, SpanBERT, T0, and mT5, with respective parame-
ter sizes of 15 M, 340 M, 340 M, 3 B, and 13 B, exhibited
average F1 performances of 73.0, 76.9, 79.6, 82.3, and
83.3, respectively. While the mT5 and T0 models exhib-
ited better average F1 performances than SpanBERT,
their parameter sizes were approximately 38 and 9 times
larger than that of SpanBERT, respectively. Therefore,
employing mT5 and T0 as LM for the CR incurs a consid-
erable computational cost.

BERT, which uses a self-supervised training method
that masks individual words or subwords in NL text,
exhibits good performance in the field of NLP [27].
When masking some of the wordpiece tokens in a
masked language model, BERT independently selects
each token from a sequence of words or subword tokens
at random. However, because the CR task recognizes
the relationships between spans in an NL text, it must
better represent and predict the spans in the NL text.
SpanBERT, proposed by Joshi and others [21], is a self-
supervised learning model that randomly selects
contiguous spans that exhibit better performance than
BERT for CR.

Figure 1 shows the CR training process using the CR-
M-SpanBERT model. This involves extracting sentences
from the CR data and generating dependency trees and
DR sentences. NL and DR sentences were then subjected
to NL and DR embedding to generate multiple embed-
dings. The generated multiple embeddings were input
into the SpanBERT model, which subsequently per-
formed span representation and antecedent classification.
The CR model was trained using a loss function.

The proposed DNN model for CR consists of multiple
embeddings, a self-attention SpanBERT, attention-based
span representation, and antecedent classification. Multi-
ple embeddings parse the dependencies of NL and then
integrate the NL and DR embeddings. Self-attention
SpanBERT generates an output sequence that can be
used for span representation using multiple embeddings
as the input sequence. The attention-based span
representation embeds a span using the self-attention
SpanBERT outputs. Antecedent classification detects

mentions using attention-based span representation out-
put and determines the antecedent of an anaphora
among the mentions. The details of each module follow.

3.1 | Multiple embeddings

To perform NLP, each word of the NL text must be
embedded, and word-embedding techniques such as
semantic-based c-gram [28], skip-gram [29], and
glove [30] have been proposed. However, because each
word in an NL text contains semantic and syntactic infor-
mation, word embeddings that include this information
in a complex manner must be performed to understand
the NL text more accurately.

In the case of CR, it is necessary to understand the
syntax and semantics of NL texts simultaneously. There-
fore, multiple embeddings were performed that included
syntactic and semantic information for each word in the
NL text. To analyze the syntactic information of the NL
text and establish dependency relationships between the
words in a sentence, a parse tree was generated using a
dependency parser. Specifically, the parse tree for the
sentence “Google has announced their Android Platform
for mobile devices” is shown in Figure 2. The syntactic

F I GURE 1 Coreference resolution model using a multiple

embedding-based span bidirectional encoder representations from

transformers (CR-M-SpanBERT).
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structures of sentences are determined using the fast
and accurate dependency parser proposed by Chen
and others [31].

Only a few types of DRs exist between the words in
sentences created using a dependency parser [32]. There-
fore, the syntactic embeddings of DRs are generated
using a simple and high-performance skip-gram. In other
words, DRs such as nsubj, aux, and amod generated by a
dependency parser are trained and transformed into
embedding vectors using the skip-gram model, which is
the Word2vec model proposed by Mikolov and others
[29]. Semantic embedding separates NL text into words
and performs embedding for each word. That is, words in
a sentence, such as “mobile” and “devices,” are trans-
formed into embedding vectors using the Word2vec
model. Positional embedding was performed to generate
relative position information for tokens in NL texts using
a sinusoidal function [33].

By integrating semantic, syntactic, and positional
embeddings, as shown in (1), multiple embeddings,
including DRs and semantic information, were generated

for each token in the NL text. The multiple embedding-
based SpanBERT (M-SpanBERT), as depicted in Figure 3,
generates an output sequence that can be used for span
representation using multiple embeddings.

xt ¼Φm st, rt, ptð Þ ð1Þ

where xt denotes the multiple embeddings for the t th

token in NL text; st, rt, and pt are the semantic, syntactic,
and positional embeddings for the t th token in NL text,
respectively; and Φm is the element-wise addition and
concatenation function for multiple embeddings.

3.2 | Self-attention SpanBERT

The self-attention value was generated using a multiple
embedding sequence, as shown in Figure 3. The key (kti),
query (qti), and value (vti) corresponding to the t th token
of the i th attention were generated by applying a feedfor-
ward neural network (FFNN) to each token of multiple
embeddings (xt). An attention score (sti) was generated
for each token using the key and query. The softmax
value (oti) of the attention score is

ot,li ¼ exp st,li
� �

PT
j¼1 exp st,ji

� � , ð2Þ

where ot,li is the softmax value of the t th token using the
l th token of the i th attention, st,li is the attention score of
the t th token with the l th token of the i th attention, and
T is the sequence length.

The self-attention value (ati) is given by

at
i ¼ oti •V i, ð3Þ

where at
i is the self-attention value of the t th token of the

i th attention, oti is the softmax value of the t th token of
the i th attention, and V i is the value of all tokens of the
i th attention. The matrix multiplication operator is
expressed as • .

The multiple self-attention value concatenates all
attention values as

Ap ¼Φc A1, …, ALð ÞW pþbp, ð4Þ

where Ap is the multiple self-attention value in the p th

layer, A1 is the first attention value of all tokens, AL is
the last attention value of all tokens, Φc is the concatena-
tion function, and W p and bp are the weight matrix and
bias in the p th layer, respectively.

F I GURE 2 Dependency tree in a natural language

(NL) sentence.

F I GURE 3 M-SpanBERT.
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Decoding in the p th layer is performed by applying
the output of the previous layer, the (p - 1)th layer, to the
multiple self-attention values in the p th layer as follows:

Dp ¼Φd Ap, Xp�1
� �

, ð5Þ

where Dp is the decoding value in the p th layer, Xp�1 is
the output of the p-1ð Þth layer, X0 is a multiple embed-
ding sequence, and Φd is the residual connection and
normalization function.

An FFNN is constructed using decoding values as
follows:

f pn ¼ σn f pn�1W
p
nþbn

� �
, ð6Þ

where f p0 = Dp, σn is the activation function of the n th

layer of the FFNN, n is the FFNN layer (with values from
1 to N), W p

n is a weight matrix mapping the n-1ð Þth layer
to the n th layer of the FFNN, and bn is the bias of the n th

layer of the FFNN. The dimensions of f pN were the same
as those of Dp.

The output of the p th layer, obtained from the decod-
ing value and FFNN result, is as follows:

Xp ¼Φd Fp, Dpð Þ, ð7Þ

where Xp is the output vector of the p th layer and Fp

(i.e., f pN ) is the FFNN result of the p th layer.
M-SpanBERT utilizes the existing SpanBERT, and

fine-tuning is performed with span representation
and antecedent classification, as depicted in Figure 1.

3.3 | Attention-based span
representation

The output sequence (XL) is the output vector of the last
layer of the M-SpanBERT. For the CR, a span representa-
tion was performed using this output sequence. The span
indices (et) consist of candidate spans with the maximum
span width. The masked span indices (et) are masked by
the maximum span width as follows:

mt,i ¼
0 lt,i ≤max span widthð Þ
�inf lt,i ≥ max span widthð Þ
� inf i et,ið Þ≥ len sentenceð Þð Þ

8>><
>>:

,

et ¼ et
K

mt,

ð8Þ

where mt,i is the attention mask of the i th word in the t th

candidate span, lt,i is the difference between the index

values of the start and i th words in the t th candidate span,
i et,ið Þ is the i th word index value of the t th candidate span,
mt is the mask vector of the t th candidate span, et is the
span index vector of the t th candidate span, and et is
the masked span index of the t th candidate span.
Element-wise addition is denoted by

J
.

The process of generating span-attention embeddings
is shown in Figure 4.

The M-SpanBERT attention score (si) for each token
was obtained using the M-SpanBERT output sequence
and FFNN, as follows:

si ¼ σs
XT

t¼1
xLi,twtþbs

� �
, ð9Þ

where si is the i th M-SpanBERT attention score in the
M-SpanBERT output sequence, σs is the activation func-
tion of the FFNN, T is the size of the M-SpanBERT
embedding vector, xLi,t is the t th value of the i th

M-SpanBERT embedding vector in the M-SpanBERT out-
put sequence (XL), wt is the weight matrix mapping the
t th value of the M-SpanBERT embedding to
the M-SpanBERT attention score, and bs is the
FFNN bias.

The M-SpanBERT attention score corresponding to
the index of each word was applied to the masked span
indices (et) to create score span indices (_et). Subsequently,
softmax was applied to each row of the score span
indices for the attention span indices (e

¼
t,i), as shown

in (10),

e
¼
t,i ¼ exp _et,ið ÞPW

j¼1 exp _et,j
� � , ð10Þ

F I GURE 4 Process used to generate span-attention

embeddings using the output sequence and masked span index.
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where e
¼
t,i is the softmax value of _et,i; _et,i is the i

th word of
the t th candidate span in the score-span indices, and W is
the maximum span width.

The M-SpanBERT output embedding (XL) corre-
sponding to the index of each word is applied to the span
indices (et) to create the span embedding (pt).

Span-attention embedding (zai Þ is created using the
M-SpanBERT span embedding and attention span indi-
ces, as shown in (11) and (12). To create the
M-SpanBERT value embedding, the M-SpanBERT span
embedding was multiplied by the attention span indices,
as shown in (11). Span-attention embedding was created
by the element-wise addition of the candidate span vec-
tors of the M-SpanBERT value embedding, as expressed
by (12).

vt,i ¼ pt,i • e
¼
t,i, ð11Þ

zat ¼
XW

j¼1
vt,j, ð12Þ

where vt,i is the i th embedding of the t th candidate span
in the M-SpanBERT value embedding, pt,i is the i th

embedding of the t th candidate span in the M-SpanBERT
span embedding, symbol • is a multiplication operator,
and zat is the t th candidate span in the span-attention
embedding.

The attention-based span representation (z) concate-
nates the span start, end, width, and attention embed-
dings as follows:

zt ¼Φc zst , z
e
t , z

w
t , z

a
t

� �
, ð13Þ

where zt is the t th attention-based span representation
and zst , z

e
t , z

w
t , and zat are the span’s start, end, width, and

attention embeddings of the t th span, respectively.

3.4 | Attention-based antecedent
classification

The procedure for generating pair embeddings of anaph-
ora and antecedent for antecedent classification is shown
in Figure 5.

Mention detection is the detection of span representa-
tions observed as mentions in NL texts. First, the men-
tion score for each span representation was obtained. The
span representations with high-mention scores were then
identified. The mention score for each span representa-
tion was determined using the FFNN [see (14)].
The input data of the FFNN layer are a span representa-
tion (z).

f nt ¼ σn f n�1
t wnþbn

� �
, ð14Þ

where f nt is the t th hidden vector of the n th layer of the
FFNN (f 0t = zt), σn is the activation function of the n th

layer, n is the FFNN layer (from 1 to L), wn is the weight
matrix mapping the n-1ð Þth layer to the n th layer, and bn

is the bias of the n th layer.
In the last layer of the FFNN for the mention score,

the output of each span (f Lt ) has a mention score. Using
these mention scores (f Lt , where t ranges from 1 to T, and
T is the number of span representations), mentions were
detected by selecting spans with high-mention scores.
Approximately 40% of the spans were selected for mention.
A detected mention is a subset of span representations.

The antecedent in the CR refers to the anaphora in
the NL text. Using the mention score, several antecedent
scores for each anaphora were measured using FFNN.

Anaphora embeddings consist of span representations
with high-mention scores as follows:

en ¼ zh, zh�1, …, zh�k�1
� �

, ð15Þ

where en is the anaphora embedding, zh is the span repre-
sentation with the highest mention score, and zh�k�1 is
the span representation with the k th largest mention
score.

Antecedent embeddings consist of span representa-
tions with high-mention score for each anaphora as
follows:

eak ¼ zhk , z
h�1
k , …, zh�c�1

k

� �
, ð16Þ

where eak is the antecedent embedding of the k th anaph-
ora; zhk is the span representation with the highest

F I GURE 5 Pair embeddings of anaphora and antecedent.
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mention score for the k th anaphora, and zh�c�1
k is the

span representation with the c th largest mention score for
the k th anaphora.

Pair embedding is generated using data such as ante-
cedent embedding, as shown in (17). Similarity, embed-
ding is represented by the element-wise multiplication of
the anaphora and antecedent embeddings. Feature
embedding represents features such as speaker identifica-
tion (ID) and antecedent distance between the anaphora
and candidate antecedents.

epk,i ¼Φc enk , e
a
k,i, e

s
k,i, e

f
k,i

� �
, ð17Þ

where epk,i, e
n
k , e

a
k,i, e

s
k,i, and efk,i are the pair, anaphora,

antecedent, similarity, and feature embeddings of the k th

anaphora and i th antecedent, respectively.
The procedure for generating antecedent scores and

attention-based mention embeddings using pairs of
anaphoras and antecedent embeddings is shown in
Figure 6.

The antecedent score was measured using the gener-
ated pair embedding as the input data of the FFNN, as
follows:

f nk,c ¼ σn f n�1
k,c wnþbn

� �
, ð18Þ

where f nk,c are the hidden vectors of the k th anaphora and
c th candidate antecedent in the n th layer of the FFNN
(f 0k,c = epk,c), respectively.

In the last layer of the FFNN for the antecedent score,
the output of the pair between the anaphora and anteced-
ent (f Lk,c) has an antecedent score. These antecedent
scores were used as attention scores.

The softmax value (gk,c) of the c th antecedent of the
k th anaphora was calculated using the candidate anteced-
ent scores of the k th anaphora, as shown in(19). The
attention value of the k th anaphora (vk) is the product of
the antecedent embedding and softmax values after
matrix multiplication, as expressed in (20). Attention-
based mention embedding was generated by applying
mention embedding to the attention values, as shown
in (21).

gk,c ¼
exp f Lk,c

� �
PC

j¼1 exp f Lk,j
� � , ð19Þ

vk ¼
XC

j¼1
eak,j • gk,j

� �
, ð20Þ

uk ¼ y� vkþ 1� yð Þ � enk , ð21Þ

where gk,c is the softmax value of the antecedent score
(f Lk,c) of the c th antecedent of the k th anaphora, C is the
number of candidate antecedents of an anaphora, vk is
the attention value of the k th anaphora, eak,j is the ante-
cedent embedding of the j th antecedent of the k th anaph-
ora, the symbol • denotes matrix multiplication, uk is the
k th attention-based mention embedding (k ranges from
1 to K, where K is the number of anaphors), and y is a
scalar value which ranges between 0 and 1.

F I GURE 6 Antecedent scores and attention-based mention

embeddings.

TAB L E 1 Performance on OntoNotes coreference resolution (CR) benchmark.

Model

B3 CEAFφ4 MUC

Average F1P R F1 P R F1 P R F1

Lee 4.et al. [18] 72.2 69.5 70.8 68.2 67.1 67.6 81.4 79.5 80.4 73.0

Kantor and Globerson [19] 73.3 76.2 74.7 72.4 71.1 71.8 82.6 84.1 83.4 76.6

BERT [20] 76.5 74.0 75.3 74.1 69.8 71.9 84.7 82.4 83.5 76.9

SpanBERT [21] 78.3 77.9 78.1 76.4 74.2 75.3 85.8 84.8 85.3 79.6

CR-M-SpanBERT (ours) 81.4 78.0 79.6 77.9 75.1 76.5 87.0 84.2 85.6 80.6
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Attention-based mention embeddings are used to
recognize attention-based antecedent scores using (16)–
(18) recursively. Consequently, an attention-based
antecedent score f

L
k,c

� �
was obtained.

Supervised learning was performed so that the ante-
cedent of an anaphora had the highest antecedent score.
The mask of the antecedent score (mk,c) has a value of
zero if the cluster identity (ID) of anaphora (k) and the
cluster ID of the candidate antecedent of anaphora (c)
are the same; otherwise, it has a value of -inf, as shown
in (22). The masked antecedent score (rk,c) only maintains
the antecedent score value that matches the cluster ID of
the anaphora and the antecedent in the antecedent score;
the remaining score is -inf, as shown in (23). The loss func-
tion (L) for learning is given by (24). Learning was per-
formed such that the loss value was minimized.

mk,c ¼
0 clusterID kð Þ¼ clusterID cð Þð Þ

� inf clusterID kð Þ≠ clusterID cð Þð Þ

�
, ð22Þ

rk,c ¼ f
L
k,cþmk,c, ð23Þ

L¼
XK

i¼1
log

XC

j¼1
exp f

L
i,j

� �� �
� log

XC

j¼1
exp ri,j

� �� �n o
,

ð24Þ

where mk,c is the mask of the antecedent score of the k th

anaphora and c th candidate antecedent, rk,c is the masked
antecedent score of the k th anaphora and c th candidate
antecedent, and L is the loss value.

The antecedent of an anaphora is recognized in an
NL text through an attention-based CR system using
M-SpanBERT.

EXPERIMENTAL RESULTS
To evaluate the effectiveness of the proposed attention-
based CR system using M-SpanBERT, the proposed
model was compared with a model that utilizes Span-
BERT as the LM in CR studies. The precision, recall, and
F1 of the MUC, B3, and CEAFφ4 metrics were used for
evaluating the performance of the CR model [34]. Preci-
sion and recall are the indicators of the correct propor-
tion of resolved coreference information and fraction of
correct coreference information that has been resolved,
respectively. F1 measures the balance between recall and
precision. Therefore, the average F1 values of the MUC,

F I GURE 7 Coreference resolution (CR) accuracy test results

using the (A) CR-M-SpanBERT and (B) SpanBERT models.

F I GURE 8 Comparison of the coreference resolution (CR) accuracy using the proposed model (CR-M-SpanBERT) and SpanBERT:

(A) precision, (B) recall, and (C) F1 score responses of the B3 metric.

F I GURE 9 Coreference resolution (CR) accuracy comparison

between the CR-M-SpanBERT and SpanBERT models using the

average (Ave.) F1 scores of the B3, CEAFφ4, and MUC metrics.
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B3, and CEAFφ4 metrics are important indicators for
comparing the performances of CR models.

Performance evaluation was conducted using an NVI-
DIA V-100 (32GB) graphics processing unit, utilizing
approximately 31 GiB of memory and requiring approxi-
mately 43 min to complete one epoch. The results of the
performance on the OntoNotes CR benchmark are listed in
Table 1. The proposed CR-M-SpanBERT achieved a higher
CR accuracy than the other CR models that employed
LSTM, BERT, and SpanBERT as language models. The pre-
cision, recall, and F1 of the MUC metric for the proposed
model were 86.9, 84.2, and 85.6, respectively. The precision,
recall, and F1 of the B3 metric of the proposed model were
81.2, 78, and 79.6, respectively. The precision, recall, and
F1 of the CEAFφ4 metric for the proposed model were 77.9,
75.1, and 76.5, respectively. The average F1 values of the
MUC, B3, and CEAFφ4 metrics were 80.6. Thus, the pro-
posed model had the highest average F1 value compared
with the other CR models that employed LSTM, BERT,
and SpanBERT as language models.

Among the existing CR models compared in Table 1,
the SpanBERT model proposed by Joshi et al. [21] is the
most similar to the CR-M-SpanBERT model proposed in
this study because both utilize SpanBERT as the
LM. However, this study conducted dependency parsing
for NL sentences, generated embeddings for the DR, and
created multiple embeddings to incorporate simultaneously
the syntactic and semantic information of NL sentences for
the CR. In addition, this study performs span and mention
representations using attention. The performances of Span-
BERT and CR-M-SpanBERT are compared across the met-
rics in Figures 7–9 and Tables 2 and 3.

Figure 7 shows the evaluation test results obtained
using the CR-M-SpanBERT and SpanBERT models. In
the CR-M-SpanBERT model, the evaluation test results
show that as the number of epochs increases, the CR
accuracy improves, as shown in Figure 7A. In the Span-
BERT model, the CR accuracy was improved, as shown
in Figure 7B. A performance comparison of the B3 metric
between the CR-M-SpanBERT and SpanBERT models is
shown in Figure 8. The comparison focused on the preci-
sion, recall, and F1 values of the B3 metric. It was
observed that the CR-M-SpanBERT model exhibited
fewer fluctuations in precision and recall as a function of
the number of epochs, thus achieving higher F1 scores
than that of the SpanBERT model.

Table 2 lists the maximum and minimum values of
the CR accuracy measured in the evaluation tests using
the CR-M-SpanBERT and SpanBERT models. At the
same time, the maximum precision values for B3,
CEAFφ4, and MUC are better for the SpanBERT model
than for the CR-M-SpanBERT model. The evaluation of
the instances where maximum precision was measured is T
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provided in Table 3. During the training process, the
recall tended to be lower in the epoch in which the Span-
BERT model achieved maximum precision. Figure 8
shows that in the CR of the SpanBERT model, there is a
considerable fluctuation in the precision and recall values
as a function of the epoch, this leading to instances
where the maximum precision is higher for the Span-
BERT model than for the CR-M-SpanBERT model.
Therefore, simultaneously considering false positives and
false negatives in the F1 value is more appropriate for
performance measurements in CR. In Table 2, bold
emphasis highlights that the maximum F1 scores for B3,
CEAFφ4, and MUC are better in the CR-M-SpanBERT
model compared to the SpanBERT model.

In terms of the maximum F1 scores for B3, CEAFφ4,
and MUC, CR-M-SpanBERT outperformed SpanBERT
with performance improvements of 1.03, 0.96, and 0.73,
respectively. As a result, the average F1 scores of B3,
CEAFφ4, and MUC demonstrate a superior performance
improvement of 0.92. The performance of CR using the
SpanBERT model as the LM yielded an average F1 value
of 79.6 [21]. In this study, the average F1 value of 80.6
constitutes the best CR performance using SpanBERT.

Figure 9 shows the differences in accuracy according
to the number of epochs for the average F1 of the B3,
CEAFφ4, and MUC metrics for the SpanBERT and the
proposed model. The CR accuracy of the proposed model
increased to 80.56, whereas that of SpanBERT increased
to 79.64 for the average F1 score. The proposed model
had an average F1 accuracy greater than 75 at six epochs,
whereas SpanBERT achieved the same accuracy at
12 epochs. Therefore, the proposed model learned the CR
faster. Furthermore, because the proposed model exhib-
ited lesser fluctuation as the number of epochs increased,
the performance improvement as the number of epochs
increased was more stable than that of SpanBERT.

As shown in Table 4, Bohnet and others [26] and Liu
and others [25] reported average F1 scores of 83.3 and
82.3 for CR, respectively. However, to achieve such a
high performance, they used mT5XXL (LM with a param-
eter size of 13 billion) and T03B (LM with a parameter
size of 3 billion). In comparison, SpanBERT had a param-
eter size of 340 million. The proposed method employed
SpanBERT as the LM and incorporated a skip-gram for
multiple embeddings. The parameter size of the skip-
gram model was approximately 0.3 million. Therefore,

TAB L E 3 Accuracy at the epoch with maximum precision for SpanBERT and CR-M-SpanBERT.

Model

B3 CEAFφ4 MUC

P R F1 Epoch P R F1 Epoch P R F1 Epoch

SpanBERT 84.95 63.24 72.5 14 78.21 71.12 74.49 26 88.99 74.02 80.82 14

CR-M-SpanBERT 82.07 66.86 73.69 8 77.92 75.11 76.49 37 87.77 79.65 83.51 15

TAB L E 4 Comparison of CR performances with large LM models.

Model B3 (F1) CEAFφ4 (F1) MUC (F1) Ave. F1

seq2seq (mT5XXL) [26] 82.6 79.5 87.8 83.3

ASP + T03B [25] 81.5 78.4 86.9 82.3

CR-M-SpanBERT 79.6 76.5 85.6 80.6

Abbreviation: CR, coreference resolution.

TAB L E 5 Comparison of CR performances with the use of multiple embeddings.

Model B3 (F1) CEAFφ4 (F1) MUC (F1) Ave. F1

LSTM [18] 70.8 67.6 80.4 73.0

└ M-LSTM 71.5 68.0 80.5 73.3

BERT [20] 75.3 71.9 83.5 76.9

└ M-BERT 76.1 72.9 83.6 77.5

SpanBERT [21] 78.1 75.3 85.3 79.6

└ M-SpanBERT 79.5 76.2 85.5 80.4

Abbreviation: CR, coreference resolution.
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the LM parameter size of the CR-M-SpanBERT model
was nearly the same as that of the SpanBERT model.
Miculicich and Henderson [35] reported an average F1
score of 80.5 for the CR based on SpanBERT. The method
proposed in this study achieved an average F1 score of
80.6, showing a slightly better performance in CR when
SpanBERT was used as the LM.

To investigate the impact of multiple embeddings on
CR performance, experiments were conducted by apply-
ing multiple embeddings to the LSTM, BERT, and Span-
BERT models. As shown in Table 5, the multiple
embedding-based LSTM (M-LSTM) model, which incor-
porates multiple embeddings into the LSTM, exhibited an
improved average F1 performance of 73.3. The multiple
embedding-based BERT (M-BERT) and M-SpanBERT
models demonstrated average F1 performances of 77.5
and 80.4, respectively. The performance of the average F1
in the M-LSTM, M-BERT, and M-SpanBERT models was
improved by 0.3, 0.6, and 0.8, respectively, compared
with the LSTM, BERT, and SpanBERT models.

Multiple embeddings refer to those that include infor-
mation regarding DR, where DR encompasses the syntac-
tic information of each word in a sentence. The CR task
involved grouping mentions in the NL texts that con-
veyed the same meaning into the same cluster. As the
sentence components of mentions in NL texts are often
subjects and objects, incorporating DR enhances the
accuracy of CR. For example, a cluster of mentions refer-
ring to the same entity (Obama, he) can be generated
from the text “Obama was born in Hawaii in 1961. He
was elected as the President of the United States 48 years
later.” Here, “Obama” and “He” are both subjects in their
respective sentences.

The document length characteristics for the English-
language data in OntoNotes used for benchmark testing
are shown in Figure 10. The test data consisted of 343 doc-
uments. The number of sentences in each document ran-
ged from a minimum of two to a maximum of 127, with
an average of 28 and a median of 19. The word count var-
ied from 33 to 2314 with an average of 476 and a median
of 402.

The test data were divided into two sets based on the
median word count: one with shorter documents ranging
from 28 to 402 words and the other with longer docu-
ments ranging from 403 to 2314 words. The CR perfor-
mance based on document length is presented in Table 6.
The performance of CR for short documents appears to
be slightly better than that for long documents.

4 | CONCLUSION

This study addressed the CR-M-SpanBERT model for
antecedent recognition in NL texts. The CR-
M-SpanBERT model consisted of DR, M-SpanBERT, and
coreference modules. The DR module parsed an NL sen-
tence to build a dependency tree and then generated a
DR. The M-SpanBERT module performed multiple
embeddings using NL and DR embeddings, and then
performed deep learning using SpanBERT. The corefer-
ence module performed span representation using the
output of M-SpanBERT, detected mentions among
spans, and recognized antecedents among mentions in
the NL text.

The effectiveness of the proposed CR-M-SpanBERT
model was evaluated by comparing it with another model
that utilized SpanBERT as the language model. The
experimental results revealed that CR-M-SpanBERT
achieved better outcomes in terms of CR accuracy than
the other models, except for the model with a large
LM. Additionally, the number of epochs required for an
average F1 accuracy >75% when the proposed CR-
M-SpanBERT model was used was lower than that
required when the SpanBERT model was used.

SpanBERT-based CR has the advantage of a signifi-
cantly smaller parameter size than that of mT5-based
CR. However, additional research is required to further
improve CR performance.

TAB L E 6 Comparison of CR performance based on document length.

Test data B3 (F1) CEAFφ4 (F1) MUC (F1) Ave. F1

Short documents 79.7 76.5 85.6 80.6

Long documents 79.6 76.3 85.5 80.5

Abbreviation: CR, coreference resolution.

F I GURE 1 0 Number of sentences and words included in each

document of the test data.
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