• Title/Summary/Keyword: Multiple Projects Management

Search Result 159, Processing Time 0.029 seconds

STATISTICALLY PREPROCESSED DATA BASED PARAMETRIC COST MODEL FOR BUILDING PROJECTS

  • Sae-Hyun Ji;Moonseo Park;Hyun-Soo Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.417-424
    • /
    • 2009
  • For a construction project to progress smoothly, effective cost estimation is vital, particularly in the conceptual and schematic design stages. In these early phases, despite the fact that initial estimates are highly sensitive to changes in project scope, owners require accurate forecasts which reflect their supplying information. Thus, cost estimators need effective estimation strategies. Practically, parametric cost estimates are the most commonly used method in these initial phases, which utilizes historical cost data (Karshenas 1984, Kirkham 2007). Hence, compilation of historical data regarding appropriate cost variance governing parameters is a prime requirement. However, precedent practice of data mining (data preprocessing) for denoising internal errors or abnormal values is needed before compilation. As an effort to deal with this issue, this research proposed a statistical methodology for data preprocessing and verified that data preprocessing has a positive impact on the enhancement of estimate accuracy and stability. Moreover, Statistically Preprocessed data Based Parametric (SPBP) cost models are developed based on multiple regression equations and verified their effectiveness compared with conventional cost models.

  • PDF

Methods of Reviewing Constructability of Nuclear Power Plants Utilizing a Data-based Technology

  • Kim, Woo Joong;Lim, Byung Ki;Byon, SuJin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.147-149
    • /
    • 2015
  • A nuclear power plant construction project normally involves a large construction work of which the total project cost is over 5 trillion Won, Such a large-scale construction project has the risks of schedule delay and quality degradation due to increase in project cost, because designs are changed due to design errors. The reasons for design changes during installation are 1) insufficient engineering capability of the owner, 2) information discontinuance due to the multiple package method, and 3) inefficient constructability review processes. Accordingly, this study proposes, through problem analysis, a method of developing a constructability review system that utilizes constructability review processes and a data-based technology (3D modeling) that are optimized for nuclear power plant construction projects. It also presents a method of establishing a system for reviewing constructability in which constructability review processes and a Database (3D model, Schedule, Design change Items) are linked each other.

  • PDF

Quantified Impact Analysis of Construction Delay Factors on Steel Staircase Systems

  • Kim, Hyun-Mi;Kim, Tae-Hyung;Shin, Young-Keun;Kim, Young-Suk;Han, Seungwoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.636-647
    • /
    • 2012
  • Construction projects have become so large, complicated and incredibly high-tech that process management is currently considered one of the most important issues. Unlike typical manufacturing industries, most major construction activities are performed in the open air and thus are exposed to various environmental factors. Many studies have been conducted with the goal of establishing efficient techniques and tools for overcoming these limitations. Productivity analysis and prediction, one of the related research subjects, must be considered when evaluating approaches to reducing construction duration and costs. The aim of this research is to present a quantified impact analysis of construction delay factors on construction productivity of a steel staircase system, which has been widely applied to high rise building construction. It is also expected to improve the process by managing the factors, ultimately achieving an improvement in construction productivity. To achieve the research objectives, this paper analyzed different delay factors affecting construction duration by means of multiple regression analysis focusing on steel staircase systems, which have critical effects on the preceding and subsequent processes in structure construction. Statistical analysis on the multiple linear regression model indicated that the environment, labor and material delay factors were statistically significant, with 0.293, 0.491, and 0.203 as the respective quantified impacts on productivity.

A Study on Determinant Factors of the Joint Technology Development Project Performance between SMEs and Universities (중소기업과 대학 간의 산학 공동기술개발 성과의 결정요인에 대한 연구)

  • Kim, Sung-Joon;Yong, Se-Jung
    • Journal of Technology Innovation
    • /
    • v.19 no.1
    • /
    • pp.145-175
    • /
    • 2011
  • The purpose of this research investigates the determinant factors of the joint technology development project performance between SMEs and universities. Reviewing existing papers we could categorize independent variables into three groups of partner characteristics, process management variables and relationship characteristics between partners. Three measures of satisfaction with the cooperation result, the intention of continuing relationship and the utilization of developed technology and product were used as dependent variable considering that we studied the joint projects of SMEs' involvement, short period and small scale. The data was collected by questionnaire survey mailed to the 1082 SMEs and university professors which executed the joint projects sponsored by Small Business Administration in 2009. We received 200 responses from SMEs, and 305 cases from professors among which 55 responses of each partner were on the same project. We analyzed the data sets individually, data of SMEs and that of universities with multiple regression analysis technique and also analyzed the common responses of 55 projects. Analysis results of the data from SMEs indicated that partners' expertise, facilities and equipment, communications, strategic importance, and trust were significant variables for the project performance. Analysis results of the data from universities showed that previous links, definition of objectives, strategic importance, trust and commitment were significant variables. Analysis results of combined data of 55 projects from SMEs and universities indicated that facilities and equipment, project management proficiency and commitment were significant variables.

  • PDF

Enhancing Project Integration and Interoperability of GIS and BIM Based on IFC (IFC 기반 GIS와 BIM 프로젝트 통합관리 및 상호 운용성 강화)

  • Kim, Tae-Hee;Kim, Tae-Hyun;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.89-102
    • /
    • 2024
  • The recent advancements in Smart City and Digital Twin technologies have highlighted the critical role of integrating GIS and BIM in urban planning and construction projects. This integration ensures the consistency and accuracy of information, facilitating smooth information exchange. However, achieving interoperability requires standardization and effective project integration management strategies. This study proposes interoperability solutions for the integration of GIS and BIM for managing various projects. The research involves an in-depth analysis of the IFC schema and data structures based on the latest IFC4 version and proposes methods to ensure the consistency of reference point coordinates and coordinate systems. The study was conducted by setting the EPSG:5186 coordinate system, used by the National Geographic Information Institute's digital topographic map, and applying virtual shift origin coordinates. Through BIMvision, the results of the shape and error check coordinates' movement in the BIM model were reviewed, confirming that the error check coordinates moved consistently with the reference point coordinates. Additionally, it was verified that even when the coordinate system was changed to EPSG:5179 used by Naver Map and road name addresses, or EPSG:5181 used by Kakao Map, the BIM model's shape and coordinates remained consistently unchanged. Notably, by inputting the EPSG code information into the IFC file, the potential for coordinate system interoperability between projects was confirmed. Therefore, this study presents an integrated and systematic management approach for information sharing, automation processes, enhanced collaboration, and sustainable development of GIS and BIM. This is expected to improve compatibility across various software platforms, enhancing information consistency and efficiency across multiple projects.

A Study on the Calculation of Productive Rate of Return (생산투자수익률 계산방법에 대한 연구)

  • Kim, Jin Wook;Kim, Kun-Woo;Kim, Seok Gon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.95-99
    • /
    • 2015
  • The IRR(internal rate of return) is often used by investors for the evaluation of engineering projects. Unfortunately, it has serial flaws: (1) multiple real-valued IRRs may arise; (2) complex-valued IRRs may arise; (3) the IRR is, in special cases, incompatible with the net present value (NPV) in accept/reject decisions. The efforts of management scientists and economists in providing a reliable project rate of return have generated over the decades an immense amount of contributions aiming to solve these shortcomings. Especially, multiple internal rate of returns (IRRs) have a fatal flaw when we decide to accep it or not. To solve it, some researchers came up with external rate of returns (ERRs) such as ARR (Average Rate of Return) or MIRR (MIRR, Modified Internal Rate of Return). ARR or MIRR. will also always yield the same decision for a engineering project consistent with the NPV criterion. The ERRs are to modify the procedure for computing the rate of return by making explicit and consistent assumptions about the interest rate at which intermediate receipts from projects may be invested. This reinvestment could be either in other projects or in the outside market. However, when we use traditional ERRs, a volume of capital investment is still unclear. Alternatively, the productive rate of return (PRR) can settle these problems. Generally, a rate of return is a profit on an investment over a period of time, expressed as a proportion of the original investment. The time period is typically the life of a project. The PRR is based on the full life of the engineering project. but has been annualised to project one year. And the PRR uses the effective investment instead of the original investment. This method requires that the cash flow of an engineering project must be separated into 'investment' and 'loss' to calculate the PRR value. In this paper, we proposed a tabulated form for easy calculation of the PRR by modifing the profit and loss statement, and the cash flow statement.

Developing a Model of Technology Readiness Levels(TRLs) for a Large-Scale National Research and Development Project (대규모 국가 연구개발 자제를 위한 기술준비수준 모델 개발)

  • Hong, Jin-Won;Park, Seung-Wook;Suh, Woo-Jong;Park, Ji-Man
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.3
    • /
    • pp.58-75
    • /
    • 2009
  • As practicalization and commercialization of the technologies invented from the national R&D(Research & Development) project has been emerging as an important issue, the need for a tool for R&D project management has been increased. Technology Readiness Levels model(TRL) has currently been used for R&D project management because it provides distinctive definition of the nine levels in the progress of technology development starting from the basic research level to the utilization level. However, it is difficult to adopt the model for a large-scale national R&D project in which multiple research projects are involved simultaneously. In addition, TRL demands evaluation of research projects done by relevant experts and offers no specific measures determining the level of technology development. This study uses Delphi method to develop the measurement system helping to determine technology readiness levels for the technologies invented in a large scale national R&D project. The proposed model includes definition and measurement scles for each level in TRL.

Determinants of energy efficiency in Sub-Saharan Africa

  • Acquah, Patience Mensah;Sun, Huaping;Alemzero, David Ajene;Li, Liang
    • Asia Pacific Journal of Business Review
    • /
    • v.5 no.2
    • /
    • pp.19-44
    • /
    • 2021
  • Sub Saharan Africa (SSA) is receiving increased investments in the energy sector under the belt and road initiative (BRI) project since its inception in 2013. SSA has a worse energy efficiency ratio coupled with deficient electricity access, through analysis showed varied impacts on the SSA countries due to the BRI initiative. This study dilves into the influencing factors for Energy Efficiency (EE) in 38 SSA countries, applying the probit and logit approach for 2000-2018. The Multiple-regression model shows significant results of some variables such as foreign direct investment, gross domestic product, and port infrastructure quality being significant on EE under BRI initiative countries. However, the logit and probit models produce similar results and the marginal effect for the entire variable, except energy imports that do not likely impact EE. Furthermore, the interaction of quality of port infrastructure and foreign direct investment variables produces significant results, highlighting the increased investments SSA receives under the BRI initiative in the energy and transport sectors. The model Percent correctly predicted (PCP) value was about 84%, indicating it correctly classified the variables and about 16% not classified. The study recommends EE performance standards should be incorporated on energy projects in SSA to ensure that these projects are energy efficient and decouple SSA's energy demand from economic growth. The research proffers suggestions for policy regarding the BRI initiative in SSA and the implications on sustainable energy and building a community with a shared future.

The Allocation Precedence of the Limited Same Resource to the Concurrent Activities under Multiple Criteria (다기준하 동일 한정 자원의 배당 우선순위 결정)

  • Hwang, Jin-Ha
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.5
    • /
    • pp.159-167
    • /
    • 2008
  • This study provides a effective approach to the construction management problem with the limited number or amount of available resources using the analytic hierarchy process. Construction management is a series of decision making processes for planning and controling of cost, time and quality as main objectives in construction works. When several activities need the limited same resource at the same time, it is very hard to decide the priority of the activities in the real situations. For that the scientific decision making method and procedure for resource allocation are required. This study solves the resource allocation problem by dealing with the decision making problem which the activities are distributed to multiple projects and under multiple criteria. The analytic hierarchy process is a method devised to solve complex multi-criteria decision problems. The result shows that this study can be effectively used to make decisions in situations involving multiple objectives by evaluating the prioritized ranking and degree of the activity alternatives based on the overall preferences.

Improving Road Construction Productivity by Developing a Programmatic Resource Distribution System for Equipment Sharing in Multi-sectioned Road Construction Projects (다(多)공구 도로 건설 현장의 장비 공유시스템 구축을 통한 생산성 향상에 관한 연구)

  • Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.134-145
    • /
    • 2013
  • Road construction projects are parcelled into sub-sections which are then tendered to individual contractors for construction. The type of work and equipments used are similar for each sub-section. However, such equipment are not shared on a regular basis among the contractors and only partially performed in an informal and ad hoc manner. Consequently, road construction equipment suffer from low utilization and increased leasing costs. Lean construction and Program Management approaches stress the importance of collaboration among individual participants in a way that increases the collective cost savings of the entire project. This research attempts to apply such theories with the notion that under utilization of expensive equipment can be improved by formalizing a way to enable the sharing of equipment in large, public sponsored, multi-sectioned road construction projects. A system was developed consisting of a set of criteria and processes that enables automatic allocation of equipment to multiple sites on daily basis, in a way that minimizes equipment costs and improves their individual utility. The system was then applied in allocating three different types of equipment to an actual road construction project with four sub-sections for three months. A new metric, nDPR showed that utilization improved for all equipment and also equipment related costs were decreased by 4.45%. Results also showed that increased shared opportunities of equipment correspond to an increase in utilization and cost savings.