• Title/Summary/Keyword: Multiple Fault

Search Result 383, Processing Time 0.025 seconds

Machine Learning-based Multiple Fault Localization with Bayesian Probability (베이지안 확률을 적용한 기계학습 기반 다중 결함 위치 식별 기법)

  • Song, Jihyoun;Kim, Jeongho;Lee, Eunseok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.151-154
    • /
    • 2017
  • 소프트웨어의 개발과정 중 결함을 제거하는 작업인 디버깅을 위해서는 가장 먼저 그 결함의 정확한 위치를 찾아야한다. 이 작업은 많은 시간이 소요되며, 이 시간을 단축시키기 위한 결함 위치 식별 기법들이 소개되었다. 많은 기법들 중 프로그램 커버리지 정보를 학습하여 규칙을 분석하는 인공신경망 기반 선행 연구가 있다. 이를 기반으로 본 논문에서는 문장들 간의 관계를 추가적으로 파악하여 학습 데이터로 사용하는 기법을 제안한다. 특정 문장이 항상 지나는 테스트케이스들 중 나머지 다른 문장들이 지나는 테스트케이스의 비율을 통해 문장들 간의 관계를 나타낸다. 해당 비율을 계산하기 위해 조건부 확률인 베이지안 확률을 사용한다. 베이지안 확률을 통해 얻은 문장들의 관계에 따라 인공신경망 내에서 의심도를 결정하는 웨이트(weight)가 기존 기법과는 다르게 학습된다. 이 차이는 문장들의 의심도를 조정하며, 결과적으로 다중 결함 위치 식별의 정확도를 향상시킨다. 본 논문에서 제안한 기법을 이용하여 실험한 결과, Tarantula 대비 평균 39.8%, 기존 역전파 인공신경망(BPNN) 기반 기법 대비 평균 60.5%의 정확도 향상이 있었음을 확인할 수 있다.

  • PDF

Performance Evaluation and Analysis of Multiple Scenarios of Big Data Stream Computing on Storm Platform

  • Sun, Dawei;Yan, Hongbin;Gao, Shang;Zhou, Zhangbing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2977-2997
    • /
    • 2018
  • In big data era, fresh data grows rapidly every day. More than 30,000 gigabytes of data are created every second and the rate is accelerating. Many organizations rely heavily on real time streaming, while big data stream computing helps them spot opportunities and risks from real time big data. Storm, one of the most common online stream computing platforms, has been used for big data stream computing, with response time ranging from milliseconds to sub-seconds. The performance of Storm plays a crucial role in different application scenarios, however, few studies were conducted to evaluate the performance of Storm. In this paper, we investigate the performance of Storm under different application scenarios. Our experimental results show that throughput and latency of Storm are greatly affected by the number of instances of each vertex in task topology, and the number of available resources in data center. The fault-tolerant mechanism of Storm works well in most big data stream computing environments. As a result, it is suggested that a dynamic topology, an elastic scheduling framework, and a memory based fault-tolerant mechanism are necessary for providing high throughput and low latency services on Storm platform.

Interconnect Delay Fault Test in Boards and SoCs with Multiple System Clocks (다중 시스템 클럭으로 동작하는 보드 및 SoC의 연결선 지연 고장 테스트)

  • Lee Hyunbean;Kim Younghun;Park Sungju;Park Changwon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.37-44
    • /
    • 2006
  • This paper proposes an interconnect delay fault test (IDFT) solution on boards and SoCs based on IEEE 1149.1 and IEEE P1500. A new IDFT system clock rising edge generator which forces output boundary scan cells to update test data at the rising edge of system clock and input boundary scan cells to capture the test data at the next rising edge of the system clock is introduced. Using this proposed circuit, IDFT for interconnects synchronized to different system clocks in frequency can be achieved efficiently. Moreover, the proposed IDFT technique does not require any modification of the boundary scan cells or the standard TAP controller is simple in terms of test procedure and is small in terms of area overhead.

Internal Structure and Movement History of the Keumwang Fault (금왕단층의 내부구조 및 단층발달사)

  • Kim, Man-Jae;Lee, Hee-Kwon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.211-230
    • /
    • 2016
  • Detailed mapping along the Keumwang fault reveals a complex history of multiple brittle reactivations following late Jurassic and early Cretaceous ductile shearing. The fault core consists of a 10~50 m thick fault gouge layer bounded by a 30~100 m thick damaged zone. The Pre-cambrian gneiss and Jurassic granite underwent at least six distinct stages of fault movements based on deformation environment, time and mechanism. Each stage characterized by fault kinematics and dynamics at different deformation environment. Stage 1 generated mylonite series along the Keumwang shear zone by sinistral ductile shearing during late Jurassic and early Cretaceous. Stage 2 was a mostly brittle event generating cataclasite series superimposed on the mylonite series of the Keumwang shear zone. The roundness of pophyroclastes and the amount of matrix increase from host rocks to ultracataclasite indicating stronger cataclastic flow toward the fault core. At stage 3, fault gouge layer superimposed on the cataclasite generated during stage 2 and the sedimentary basins (Umsung and Pungam) formed along the fault by sinistral strike-slip movement. Fragments of older cataclasite suspended in the fault gouge suggest extensive reworking of fault rocks at brittle deformation environments. At stage 4, systematic en-echelon folds, joints and faults were formed in the sedimentary basins by sinistral strike-slip reactivation of the Keumwang fault. Most of the shearing is accommodated by slip along foliations and on discrete shear surfaces, while shear deformation tends to be relatively uniformly distributed within the fault damage zone developed in the mudrocks in the sedimentary basins. Fine-grained andesitic rocks intruded during stage 4. Stage 5 dextral strike-slip activity produced shear planes and bands in the andesitic rocks. ESR(Electron Spin Resonance) dates of fault gouge show temporal clustering within active period and migrating along the strike of the Keumwang fault during the stage 6 at the Quaternary period.

Revisiting the OSL Ages of Marine Terrace Sediments at Suryum Fault Site, Gyeongju, South Korea: Single Grain OSL Dating (수렴단층노두 해안단구 퇴적층의 OSL 연대에 대한 재고찰: 단일입자 OSL 연대측정 연구)

  • Heo, Seoyoung;Choi, Jeong-Heon;Hong, Duk-Geun
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.187-195
    • /
    • 2014
  • In this paper, we report new OSL ages of the marine terrace sediments at Suryum fault site, using single grains of quartz, and briefly discuss their chronological implications on the timing of terrace formation along the southeastern coast of Korea. Of 1200 grains measured, 93 quartz grains were found to have OSL properties suitable for dating, the equivalent dose ($D_e$) values of which varied significantly, ranging from 50 Gy to 610 Gy with the overdispersion of $30{\pm}4%$. Applied to the Central Age Model (CAM) and Minimum Age Model (MAM), these quartz grains showed the OSL ages of $83{\pm}4ka$ and $60^{+3}{_{-7}}ka$, respectively, both of which are stratigraphically inconsistent with the previously reported OSL ages of lower $2^{nd}$ terrace (MIS 5a; ~80 ka). However, Finite Mixture Model (FMM) revealed that a small fraction of the measured quartz grains ($6{\pm}4%$) were of the ages ($194{\pm}24ka$) corresponding to MIS 7. Conclusively, based on single grain OSL ages, it would be prudent not to exclude the possibility that the marine terrace sediments at Suryum fault site have formed during MIS 7. Further, our single grain OSL ages imply that multiple grain(single aliquot) OSL dating methods are not applicable to the marine sediments at Suryum fault site.

A Development of Hit Probability-based Vulnerability Analysis System for Armored Fighting Vehicle using Fault Tree Analysis Technique (FTA 기법을 활용한 피격 확률 기반의 전차 취약성 분석 시스템 개발)

  • Hwang, Hun-Gyu;Yoo, Byeong-Gyu;Lee, Jae-Woong;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1981-1989
    • /
    • 2015
  • Recently, the development of reliability analysis system for combat system is required, because, necessities of integrated reliability analysis research are emphasized. In this paper, we develop a system which analyzes vulnerabilities for tank(or armored vehicle) based on the fault tree analysis(FTA) technique. The FTA is representative technique of reliability analysis to find cause of fault and calculate probability of fault. To do this, we propose a method to apply FTA technique into domain of vulnerability analysis for tank. Also, we develop the vulnerability analysis system using the proposed method. The system analyzes hit probabilities of components of tank based on multiple shot-lines, and calculates kill probabilities. The analyzed and calculated data support vulnerability analysis of tank.

A new method to predict the critical incidence angle for buildings under near-fault motions

  • Sebastiani, Paolo E.;Liberatore, Laura;Lucchini, Andrea;Mollaioli, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.575-589
    • /
    • 2018
  • It is well known that the incidence angle of seismic excitation has an influence on the structural response of buildings, and this effect can be more significant in the case of near-fault signals. However, current seismic codes do not include detailed requirements regarding the direction of application of the seismic action and they have only recently introduced specific provisions about near-fault earthquakes. Thus, engineers have the task of evaluating all the relevant directions or the most critical conditions case by case, in order to avoid underestimating structural demand. To facilitate the identification of the most critical incidence angle, this paper presents a procedure which makes use of a two-degree of freedom model for representing a building. The proposed procedure makes it possible to avoid the extensive computational effort of multiple dynamic analyses with varying angles of incidence of ground motion excitation, which is required if a spatial multi-degree of freedom model is used for representing a building. The procedure is validated through the analysis of two case studies consisting of an eight- and a six-storey reinforced concrete frame building, selected as representative of existing structures located in Italy. A set of 124 near-fault ground motion records oriented along 8 incidence angles, varying from 0 to 180 degrees, with increments of 22.5 degrees, is used to excite the structures. Comparisons between the results obtained with detailed models of the two structures and the proposed procedure are used to show the accuracy of the latter in the prediction of the most critical angle of seismic incidence.

Research on Backup Protective Coordination for Distribution Network (네트워크 배전계통용 백업 보호협조에 관한 연구)

  • Kim, WooHyun;Chae, WooKyu;Hwang, SungWook;Kim, JuYong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.15-19
    • /
    • 2022
  • The radial distribution systems (RDS) commonly used around the world has the following disadvantages. First, when the DL is operated on a radial system, the line utilization rate is usually kept low. Second, if a fault occurs in the radial DL, a power outage of 3 to 5 minutes is occurring depending on the operator's proficiency and fault situation until the fault section is separated and the normal section is replaced. To solve this problem, Various methods have been proposed at domestic and foreign to solve this problem, and in Korea, research is underway on the advanced system of operating multiple linked DL always. A system that is electrically linked always, and that is built to enable high-speed communication during the protection coordination is named networked distribution system (NDS). Because the load shares the DL, the line utilization rate can be improved, and even if the line faults, the normal section does not need to be cut off, so the normal section does not experience a power outage. However, since it is impossible to predict in which direction the fault current will flow when a failure occurs in the NDS, a communication-based protection coordination is used, but there is no backup protection coordination method in case of communication failure. Therefore, in this paper, we propose a protective cooperation method to apply as a backup method when communication fails in NDS. The new method is to change TCC by location of CB using voltage drop in case of fault.

Relationship between Shear Strength and Component Content of Fault Cores (단층핵 구성물질의 함량과 전단강도 사이의 상관성 분석)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Seo, Yong-Seok
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.65-79
    • /
    • 2019
  • In this study, simple regression and multiple regression analyses were performed to analyze the relationship between breccia and clay content and shear strength in fault cores. The results of the simple regression analysis performed for each rock (andesitic rock, granite, and sedimentary rock) and three levels of normal stress (${\sigma}_n=54$, 108, 162 kPa), reveal that the shear strength is proportional to breccia content and inversely proportional to clay content. Furthermore, as normal stress increases, the shear strength is influenced by the change in component content, correlating more strongly with clay content than with breccia content. In the multiple regression analysis, which considers both breccia and clay content, the shear strength is found to be more sensitive to the change in breccia content than to that of clay. As a result, the most suitable regression model for each rock is proposed by comparing the coefficients of determination ($R^2$) estimated from the simple regression analysis with those from the multiple regression analysis. The proposed models show high coefficients of determination of $R^2=0.624-0.830$.

Precise Measurements of the Along-track Surface Deformation Related to the 2016 Kumamoto Earthquakes via Ionospheric Correction of Multiple-Aperture SAR Interferograms (다중개구간섭영상의 이온층 보정을 통한 2016 구마모토 지진의 비행방향 지표변위 정밀 관측)

  • Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1489-1501
    • /
    • 2018
  • In 2016 Kumamoto, Japan, the foreshocks of $M_j$ 6.5 and 6.4, mainshock of $M_j$ 7.3 besides more than 2,000 aftershocks occurred in succession. Large surface deformation occurred due to this serial earthquakes and three-dimensional measurements of the deformation have been presented for the study of fault structures (Baek, 2017). The 3d measurements retrieved from two ascending pairs (20160211_20160602, 20151119_20160616) and a descending pair (20160307_20160418) acquired from ALOS PALSAR-2. In order to avoid mixing ionospheric error components on along-track surface deformation, the descending multiple-aperture interferogram, which do not contain the deformation of aftershocks after 20160418, was utilized. For these reason, there was a temporal discrepancy of about 2 months in extracting the north-south deformation. In this study, we applied a directional filter based ionospheric correction to ascending multiple-aperture interferograms, in order to reduce this discrepancy and understand more accurate fault movements. As a result of the ionospheric correction, an additional displacement signal was observed nearby fault lines. The root-mean-squared errors compared to GPS were about 9.87, 8.13 cm respectively. These results show improvements of 4.8 and 6.4 times after ionospheric correction. We expected that these along-track measurements would be used to decide more accurate movements of faults related to the 2016 Kumamoto Earthquake.