
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, Jul. 2018                            2977 
Copyright ⓒ 2018 KSII 

 
Performance Evaluation and Analysis of 
Multiple Scenarios of Big Data Stream 

Computing on Storm Platform 
 

Dawei Sun1, Hongbin Yan1, Shang Gao2 and Zhangbing Zhou1 
1 School of Information Engineering, China University of Geosciences 

Beijing, 100083, P.R. China 
[e-mail: sundaweicn@cugb.edu.cn, yanhongbin@cugb.edu.cn, zhangbing.zhou@gmail.com] 

2 School of Information Technology, Deakin University 
Victoria 3216, Australia 

[e-mail: shang.gao@deakin.edu.au] 
*Corresponding author: Dawei Sun 

 
Received October 25, 2017; accepted January 22, 2018; published July 31, 2018 

 

Abstract 
 

In big data era, fresh data grows rapidly every day. More than 30,000 gigabytes of data are 
created every second and the rate is accelerating. Many organizations rely heavily on real time 
streaming, while big data stream computing helps them spot opportunities and risks from real 
time big data. Storm, one of the most common online stream computing platforms, has been 
used for big data stream computing, with response time ranging from milliseconds to 
sub-seconds. The performance of Storm plays a crucial role in different application scenarios, 
however, few studies were conducted to evaluate the performance of Storm. 

In this paper, we investigate the performance of Storm under different application scenarios. 
Our experimental results show that throughput and latency of Storm are greatly affected by the 
number of instances of each vertex in task topology, and the number of available resources in 
data center. The fault-tolerant mechanism of Storm works well in most big data stream 
computing environments. As a result, it is suggested that a dynamic topology, an elastic 
scheduling framework, and a memory based fault-tolerant mechanism are necessary for 
providing high throughput and low latency services on Storm platform. 
 
 
Keywords: multiple scenarios, high throughput, low latency, stream computing, big data, 
Storm 

 
This work is supported by the National Natural Science Foundation of China under Grant No.61602428, 61602106, 
and 61772479; and the Fundamental Research Funds for the Central Universities under Grant No. 2652015338. 
We are grateful to thank the help of Mr Zhenhua Wang for his help about the experimentation implement and 
suggestions for improvement. 
This paper is a substantially extended version of [10] presented at CollaborateCom 2017. 
 
http://doi.org/10.3837/tiis.2018.07.002                                                                                                                 ISSN : 1976-7277 

mailto:sundaweicn@cugb.edu.cn
mailto:yanhongbin@cugb.edu.cn
mailto:shang.gao@deakin.edu.au


2978                                                                Sun et al.: Performance evaluation and analysis on Storm 

1. Introduction 

Big data is a term for datasets that are too large, too fast, too dispersed, and too unstructured. 
It is challenging for current hardware and software facilities to undertake their acquisition, 
access, analysis and/or application in reasonable amounts of time and space. Some popular 
features of big data are described by nVs, high Volume, high Velocity, high Variety, high 
Veracity, high Validity, high Value, and so on [1] [2]. There are many potential and highly 
useful values hidden in big data, and data has already drawn huge attention from researchers in 
sciences, and policy and decision makers in governments and enterprises. The rise of big data 
presents many opportunities and challenges [3] [4]. 

In big data era, more and more application rely heavily on real time processing of high 
volume, continuous data stream, such as social networks, telecommunications, emergency 
response, fraud detection, system monitoring, smart cities, and to name but a few. In a real 
time computing environment, data stream must be immediately processed to get prompt 
feedback. A big data stream computing system can be employed to process heterogeneous, 
real time, fluctuate over time, unbounded data stream in a distributed and scalable computing 
manner. 

Storm [5] is one of the most popular open sourced big data stream computing systems, and 
has been widely used in many well-known companies and organizations [6] [7], such as 
Twitter, Alibaba, etc. Storm provides an on-the-fly computing paradigm, where the data is 
directly processed by running task topology in memory, without the need for storage on disk 
first. It keeps response time ranging from milliseconds to sub-seconds, and overcomes long 
response time problem (ranging from minutes to weeks) faced by big data batch computing 
systems, such as Hadoop, which provides a store-then-process computing paradigm [8] [9]. 

The performance of Storm plays a crucial role in many different application scenarios, 
however few studies were conducted to evaluate the corresponding performance of Storm [10] 
[11] [12]. We have been developing real-time big data processing applications on Storm for 
years, and deeply understand the importance of improving the processing efficiency. After 
investigating all kinds of features and mechanisms of Storm, we identify the key factors which 
mostly affect system throughput capacity and latency. 

In this paper, we analyse the performance of Storm under different application scenarios. 
Our experimental results show that throughput and latency of Storm are greatly affected by the 
number of instances of each vertex in task topology, and the number of available resources in 
data center. The fault-tolerant mechanism of Storm works well in most big data stream 
computing environments. As a result, it is suggested that a dynamical topology, an elastic 
scheduling framework, and a memory based fault-tolerant mechanism are necessary for 
providing high throughput and low latency services on Storm platform. 

1.1 Paper organization 
The rest of this paper is organized as follows: In section 2, the background on computing 
paradigm of big data stream computing and description of application scenario on Storm 
platform are reviewed. Section 3 introduces the Storm architecture, Storm characteristic, and 
work mechanism of Storm. Section 4 focuses on the experimental environment and parameter 
settings. Section 5 provides performance evaluation and result analysis. Finally, conclusions 
and future work are given in section 6. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                                          2979 

2. Background 
In this section, background of big data stream computing is presented computing paradigm of 
big data stream computing, and description of application scenario on Storm platform, some 
releted work of data management in big data platform is also introduced. 

2.1 Computing paradigm 
In big data stream computing environments, stream computing is the model of straight through 
computing. It continuously integrates and computes data in motion to deliver real-time 
analytics, and enables users to detect in-sights in high velocity data stream which can only be 
detected and acted on at a moment’s notice [13]. 

Data streamMemory

Hardware Storage

Stream computing

 
Fig. 1. Big data stream computing paradigm [13] 

 
As shown in Fig. 1, an application is described by a directed graph. The continuous input 

data streams are computed in real time. The results are also updated in real time. 

2.2 Description of application 
On Storm platform, an application is described by a DAG (Directed Acyclic Graph), called a 
topology. There are two types of vertices in a DAG: spout and bolt. Spout vertex is a vertex of 
data sources, which sends data tuples (a data tuple is a key-value pair) to bolt vertex 
continuously, and a bolt vertex is a vertex to process data tuples in the way implemented by 
users. Both the instance number of spout and bolt vertex can be set by user to increase 
parallelism. 

The DAG of an application can be further divided into two types: logic graph in function, 
and instance graph in runtime. As shown in Fig. 2, the Storm source code is the main part to 
achieve TOP_N computing function, which is provided by the user. 

 
builder.setSpout("a", new TestWordSpout(), 2);
builder.setBolt("b", new RollingCountBolt(9, 3), 4).
      fieldsGrouping("a", new Fields("word"));
builder.setBolt("c", new IntermediateRankingsBolt(TOP_N), 3).
      fieldsGrouping("b", new Fields("obj"));
builder.setBolt("d", new TotalRankingsBolt(TOP_N), 1).
      globalGrouping("c");  

Fig. 2. Source code of TOP_N in Storm 
 

The corresponding logic graph is a linear pipeline (As shown in Fig. 3), where each vertex 
only has one upstream and downstream vertex, with f represents fieldsGrouping strategy of 



2980                                                                Sun et al.: Performance evaluation and analysis on Storm 

data stream that transfers from upstream vertex to downstream vertex, and g represents 
globalGrouping strategy [5]. 

 

f fva vb vc vd

Spout Bolt Bolt Bolt  
Fig. 3. Logical graph of TOP_N in Storm 

 
The corresponding instance graph is a precedence constraint based directed acyclic graph 

(see Fig. 4), where vertex va is mapped into two parallel instances, vertex vb is mapped into 
four parallel instances, and vertex vc is mapped into three parallel instances. In Storm, the 
number of instances of each vertex is statically defined by user. 

va1
vb2

vc2

vb3

vb1

va2

vc1

vc3

vd

vb4

Spout

Bolt

Bolt

Bolt

p=2

p=4
p=3

p=1

 
Fig. 4. Instance graph of TOP_N in Storm 

2.3 Data management in big data platform 
Resource management [14]-[17] is the key part in big data platform. Some orther work also 
focus on optimize resource management by smart algorithm, such as in [18]-[22]. Many work 
of data management have been done in big data platform. In this paper ,we focus on Storm 
platfrom, and try to give a comprehensive perfromance evaluation and analysis of multiple 
scenarios on Storm platform. 

3. Storm Overview 
In order to provide a bird’s-eye view of the Storm platform, in this section, we discuss the 
overview of Storm, which includes Storm architecture, characteristics, and work mechanism. 

3.1 Storm Architecture 
Apache Storm is a free and open sourced distributed realtime computation system. The design 
of Storm makes it easy to process massive streams of data in real time and work with any 
programming language. Storm is mainly used for data stream processing and real-time search 
[5] [23] [24]. 

The architecture of Storm is shown in Fig. 5. The Storm's work is done by various types of 
components, with each component responsible for a simple task. Nimbus is the master node in 
a Storm cluster, responsible for sending code in the cluster, assigning tasks, and monitoring 
the entire cluster’s state. Supervisor is the work node in a Storm cluster, responsible for 
accepting nimbus assigned tasks, starting and stopping the management of its own worker 
processes.Worker is a process that runs specific processing component logic. Executor is a 
concrete physical thread in one Worker process.Task is the work that each component does. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                                          2981 

Zookeeper is an external resource that Storm relies heavily on, connecting the master node and 
the work node, coordinating the operation of the entire cluster. 

 
Fig. 5. Architecture of Storm 

 

3.2 Storm Characteristics 
Storm has the following characteristics [25] [26] [27]: 
• Real-time: The Storm system is designed to ensure that messages can be processed 

quickly. 
• High Fault Tolerance: Storm clusters are easy to manage, which automatically process 

processes and network anomalies. Moreover, Storm can guarantee that a processing 
logic runs forever, and if a process/task fails during processing, Storm will rearrange a 
new processing logic. 

• Strong Stretch ability: To support the expansion of computing tasks, you only need to 
add a new machine to the cluster, then increase the degree of parallelism. The number of 
messages processed per second can even reach up to1 million. 

• Language unrelated: The core part of Storm use Clojure language, however, its 
processing logic and message processing components can be defined by any language. 
For instance, the general utility is developed with python, and task topology is prepared 
with java. 

• Wide application scenarios: Storm can be used to process messages and update 
databases (message flow processing), making continuous queries on high data volume 
and returning the results to clients (continuous calculation), and parallel processing for 
resource-intensive queries (distributed method calls). 

3.2 Work Mechanism of Storm 
When a client submits a task topology to master node Nimbus, Nimbus first establishes a local 
directory based on the configuration information of the topology, instructing zookeeper to 
assign the tasks to each work node, then starts the topology. Supervisors get assigned tasks 
from Zookeeper and start multiple worker processes, and establish the connection between 
tasks according to the configuration information of the topology [28] [29]. When the topology 
is running, the Storm system provides a UI monitoring interface in master node, through which 
the client can monitor the running status of the entire cluster in real time. The whole process is 
shown in the Fig. 6. 
 
 
 



2982                                                                Sun et al.: Performance evaluation and analysis on Storm 

 

 
Fig. 6. Workflow of a Storm cluster 

 
The configuration information of the topology and grouping methods might affect the 

system throughput and latency. We thoroughly examine the Storm work mechanisms, design 
and conduct series of experiments to investigate the potential factors that might affect the 
system processing efficiency. 

4. Experiment and Parameter Setup 
To evaluate the performance of the multiple scenarios of big data stream computing on Storm 
platfrom, experimental environment and parameter settings are discussed in this section. 
 

4.1 Experimental Environment 
In the series of experiments, Storm parallelism and fault tolerance are tested using the 

following hardware configuration: intel Core i5-2400CPU @ 3.10GHz × 4, memory 4G, with 
operating system 64-bit ubuntu 16.04 LTS. Twelve (12) machines are used to test parallelism, 
and ten (10) machines are used to test fault tolerance. 

For hardware performance test, the following three groups of hardware configurations are 
used: the first group includes a Dell desktop computer, with processor intel Core i5-2400CPU 
@ 3.10GHz × 4, memory 4G, and 64-bit operating system ubuntu 16.04 LTS; the second 
group includes a DELL laptop, with processor Intel (R) Core (TM) i5-2430M CPU @ 2.4GHz 
× 4, memory 8G, and 64-bit ubuntu 16.04 LTS; the third group includes a HP laptop, with 
processor Intel (R) Core (TM) i7-7700HQ CPU @ 2.80GHz 2.81GHz, 8G memory, and 64-bit 
ubuntu 16.04 LTS. In terms of software versions, the tests use the Storm version 1.0.1, 
Zookeeper version of 3.3.6, in addition to JDK 1.8 and Python 2.7.2. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                                          2983 

 
Fig. 7. Experiment network topology 

4.2 Experimental Topology 
The experimental network topology is shown in Fig. 7. The experiment uses two task 

topologies separately. 
The first task topology, as shown in Fig. 8, is a typical word count program, which includes 

a Spout component (named spout) and two Bolt components (named split and count). Spout 
components are used to randomly launch English sentences. The split component receives the 
sentences sent from the spout component and divides it into words, and finally sends it to the 
count component for word counting. 

The second task topology is TOP_N, as shown in Fig. 9, which contains a Spout component 
(named wordGenerator) and three Bolt components (named counter, intermediateRanker and 
finalRanker). Among them, wordGenerator is responsible for pushing all the words, the same 
topic pushed to the same counter (using Storm's fieldsGrouping to achieve). Counter receives 
the topic and saves the number of occurrences of the topic. For every one minute, the counter 
will push the number of occurrences of each topic to the intermediate processing node 
intermediateRanker (also using Storm's fieldsGrouping). The IntermediateRanker component 
saves a TOP_N list, receives the message sent and refreshes TOP_N according to the number 
of topics published to sort word; it also pushes the results to the final node finalRanker every 
two seconds. Finally, the finalRanker component summarizes each TOP_N received within 
two seconds and selects the final TOP_N. 

 
Fig. 8. Structure of the Wordcount topology 

 



2984                                                                Sun et al.: Performance evaluation and analysis on Storm 

 
Fig. 9. Structure of the Top_N topology 

4.3 Experimental Process 
(1) Parallelism Test 

In Storm, the degree of parallelism is generally addressed in three areas: topology which 
specifies how many Worker processes run in parallel; Worker process which specifies how 
many Executor threads run in parallel; and Executor thread which specifies how many Tasks 
run in parallel. 

In parallelism tests, the first two areas are considered, with each Executor assigned with one 
Task by default. In order to eliminate the impact of hardware performance on the latency and 
throughput, 12 machines use the same hardware configuration. Since the default scheduling 
policy of Storm system is even distribution of Executors, only one Worker is running on each 
node. When the number of Workers in the topology is set to 24, each node runs two Workers. 
The testing time is one hour and the data is counted every two minutes. 

Multiple scenarios are designed as follows: 
Firstly, the number of threads assigned to the three components spout, split, and count is (5, 

8, 12)  and keeps unchanged in the WordCount topology. The number of threads assigned to 
the four components wordGenerator, counter, intermediateRanker and finalRanker is (5,4,1,4) 
in the Top_N topology. The number of Workers is set to 1, 3, 6, 12, and 24 respectively. 

Secondly, for a given number of Workers in each topology, the number of threads increases 
in turn. In the WordCount Topology, when the first test sets the number of Workers to 3, the 
numbers of threads are (5,8,12), (10,16,24), (15,24,36), (20,34,48), (25,40,60), (50,80,120), 
(100,160,240), (150,240,360), (200,320,480), (250,400,600). When the second test sets the 
number of Workers to 12, the number of threads remains the same as the first. In the TOP_N 
Topology, the first test sets the number of Workers to 3 and the numbers of threads are 
(5,4,1,4), (10,8,2,8), (15,12,3,12), (20,16,4,16), (25,20,5,20), (50,40,10,40), (100,80,20,80), 
(150,120,30,120), (200,160,40,160), (250,200,50,200), respectively. The second test sets the 
number of Workers to 12, and the number of threads remains the same as the first. 

Two sets of experiments test twenty sets of data for each topology and we then analyze the 
effect of changes made to the number of threads assigned to the three/four components on the 
throughput of the Storm system and the processing delay for a given a certain number of 
Workers. 

Finally, the number of processes set in the topologies remains the same, the total number of 
threads of all components keeps unchanged, while the number of threads of each component is 
adjusted. When the number of Workers is set to 3, and the number of threads in the three 
components is (5, 8, 12), (5,10,10), (5,12,8), (3,10,12) (7,10,8), (7,8,10), (9,7,9), (12,5,8) in 
the WordCount topology. The number of threads in the four components is (2,5,2,5), (5,4,1,4), 
(5,2,1,6), (5,3,3,3) (5,6,1,2), (7,3,1,3), (9,2,1,2), respectively, in Top_N topology. The impact 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                                          2985 

of data transmission and data processing on system throughput and latency is analyzed by 
testing the different thread assignments of the components in the two topologies. 
(2) Hardware Performance Test 

In order to analyze the impact of hardware performance on Storm system operation, two 
scenario are designed as follows: 
• the number of Workers set by the topologies and the number of threads for each 

component are unchanged; 
• the number of Workers set by the topologies is 3 and the threads assigned to each 

component is unchanged. 
The configuration of the three machines is shown in Table 1 and these three machines used 

in both of the topologies. 
 

Table 1. Hardware Configuration 
PC CPU Memory Operating System 

DELL Desktop Intel Core i5-2400CPU @ 3.10GHz × 4 4G ubuntu 16.04 LTS 

DELL Notebook Intel (R) Core (TM) i5-2430M CPU @ 
2.4GHz × 4 8G ubuntu 16.04 LTS 

HP Notebook Intel (R) Core (TM) i7-7700HQ CPU @ 
2.80GHz 2.81GHz 8G ubuntu 16.04 LTS 

 
(3) Robustness Test 

We test Storm on fault handling and analyze its impact on throughput and latency. Three 
scenarios are designed. In the first scenario, we shut down one node when the cluster is 
running up to 20 minutes. In the second scenario, we shut down two of the nodes when the 
cluster is running up to 20 minutes. In the third scenario, we shut down three of the nodes 
when the cluster is running up to 20 minutes and shut down three of the nodes again when the 
cluster is running up to 40 minutes. 

After the three tests, we compare the performance with that of normal scenario. 

5. Performance Evaluation and Analysis 
In this section, performance evaluation results are firstly discussed, followed by result 
analysis. 

5.1 Experimental Results 
(1) Parallelism Test 

To test parallelism, we increase the number of Workers while keeping the number of 
threads constant in the topologies. In terms of throughput capacity, when the number of 
Workers in the topology is set to 1, 3, 6, 12, and 24 respectively, in the WordCount topology , 
the amount of data processed in an hour is about 13,10000 Tuples and throughput is about 366 
Tuple/s as shown in Fig. 10; in the Top_N topology , the amount of data processed in an hour 
is about 2,00000 Tuples and throughput is about 55 Tuple/s as shown in Fig. 11. The 
throughput of the system is essentially unchanged. It can be seen, in the case of the same 
number of threads, increasing the number of Workers does not improve the Storm system 
throughput capacity significantly. 



2986                                                                Sun et al.: Performance evaluation and analysis on Storm 

 
Fig. 10. Throughput of different Workers number in 

WordCount 
 

 
Fig. 11. Throughput of different Workers number in 

Top_N  

In terms of processing latency, when the number of threads assigned to each component 
keeps constant and the system becomes stable, as the number of Workers increases, the 
processing latency does not change much. The delay is relatively large when the system starts 
to run, and then gradually reduced. In the WordCount topology, as shown in Fig. 12, when the 
Storm cluster is running steadily, the processing latency basically remains between 3 and 4 
milliseconds and the average latency in one hour is 3.771, 3.426, 3.587, 3.527, 3.386 
milliseconds respectively and about 95% of the delay comes from the process latency of the 
Bolt component that named split. When the number of Workers is set to 1, the delay in the 
one-hour test is very unstable and may be caused by the operation of other system programs 
during the test. In the Top_N topology, as shown in Fig. 13, the processing latency basically 
remains between 0.5 and 1 milliseconds and the average latency in one hour is 0.596, 0.625, 
0.730, 0.949, 0.881 milliseconds respectively. 

 
Fig. 12. Latency of different Workers number in 

WordCount 
 

 
Fig. 13. Latency of different Workers number in 

Top_N 
 

In terms of CPU utilization, during the one-hour test, the master node constantly assigns 
tasks to the Zookeeper, and the work node Supervisor also constantly receives the tasks from 
the Zookeeper, leading the CPU usage is very unstable in the two topologies: as the Worker 
number increases, the CPU usage decreases a little as shown in Fig. 14 and Fig. 15; but when 
the number of Workers increases to 24, since there are only 12 work nodes, 24 Workers are 
evenly distributed to each node, and each work node runs two Workers, so that CPU utilization 
increases slightly by 12. As shown in Fig. 16 and Fig. 17, the memory usage decreases a little 
when the number of threads allocated to each component is unchanged and the number of 
Workers is simply increased. Similarly, when the number of Workers is 24, since each node 
runs two Workers, the memory usage of the node increases. In the Storm system, usually a 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                                          2987 

Worker allocates 768M of memory and adds 64M to the logwriter process, so a Worker will 
consume about 832M of memory. But the Worker's memory space also depends on the amount 
of data flowing through the topology and the execution time of the code for each bolt unit. If 
the amount of data is large and the code execution time is long, we can increase the working 
memory of a single Worker. 

 
Fig. 14. CPU usage of different Workers number in 

WoedCount 
 

 
Fig. 15. CPU usage of different Workers number in 

Top_N 
 

 

 
Fig. 16. Memory usage of different Workers number 

in WordCount 
 

 
Fig. 17. Memory usage of different Workers number 

in Top_N 
 

In the WordCount topology, when the number of Workers in the topology is 3, as the 
number of threads assigned to each component increases, the amount of data processed by the 
system and the average throughput over an hour also increase. As shown in Fig. 18, the 
average throughput within one hour is 366, 733, 1099, 1463, 1831, 3663, 7315, 10954, 14494 
and 15828 Tuple/s respectively. If the number of Workers is set to 12, when the number of 
threads assigned to each component increases, the throughput also increases in a positive 
correlation and the average throughput within one hour is 362, 723, 1082, 1443, 1805, 3614, 
7232, 10823, 14437 and 18025 Tuple/s respectively. The throughput is almost the same when 
Worker is set to 3; but when the thread is assigned to (250,400,600), the average throughput 
increases more than about 2,000 Tuple/s compared to it. In the Top_N topology, as shown in 
Fig. 19, when the Worker set to 3,the average throughtput is 56, 109, 163, 217, 272, 541, 1081, 
1617, 2157, 2695 Tuples/s; when Worker set to 12, the average throughtput is 55, 108, 162, 
215, 267, 531, 1065, 1600, 2127, 2659 Tuple/s respectively, also increases as the number of 
threads increases. 



2988                                                                Sun et al.: Performance evaluation and analysis on Storm 

 
Fig. 18. Throughput of different Executor number in 

WordCount 
 

 
Fig. 19. Throughput of different Executor number in 

Top_N 
 

In terms of system latency, as shown in Fig. 20, in the WordCount topology, if the number 
of Workers in the topology is 3, when the number of threads assigned to each component 
increases, the processing delay of the system decreases first but then increases. When the 
number of threads assigned to each component is (50,80,120), the processing delay of the 
system is minimized and then gradually increases. When the thread configuration exceeds 
(150,240,360), the delay grows faster and exceeded 20 milliseconds when the thread is 
configured to (250,400,600). The different result applies when the number of Workers is set to 
12, when the number of threads assigned to the three components is less than (25, 40, 60), the 
average processing latency of the system within one hour is substantially the same, probably 
about 4 milliseconds. Between (25, 40, 60) and (150,240,360), the latency will gradually 
decrease to about 2ms, and when the thread configuration exceeds (150,240,360), the system 
average processing delay will slowly rise to 3 ms. Consider the reasons for this situation, when 
the number of threads allocated to three components increases, the CPU load is constantly 
increasing, although the total data processing capacity has greatly improved, a single data 
processing delay is increasing, processing efficiency is declining. In the Top_N topology, as 
shown in Fig. 21, with the number of threads increases, the system latency declines slightly. 
When the number of Workers set to 3, the processing delay of the system is minimized when 
the number of threads assigned to each component is (150,120,30,120) and then gradually 
increases. But when the number of Workers is set to 12, the data processing latency is 
declining continuously, because the fact that the minimum delay has exceeded (250, 200, 50, 
200). 

 

 
Fig. 20. Latency of different Executor number in 

WordCount 
 

 
Fig. 21. Latency of different Executor number in 

Top_N 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                                          2989 

In terms of system utilization, as shown in Fig. 22 and Fig. 23, with the increase of the 
number of threads, CPU usage gradually increases. But when the number of threads increases 
to a certain value, the CPU usage increases dramatically. In the WordCount topology, the 
threshold value is (25, 40, 60) when the number of Workers is 3; and the value is 
(100,160,240) when the number of Workers is 12. In the Top_N topology, the threshold value 
is (50,40,10,40) when the number of Workers is 3; and the value is (100,80,20,80) when the 
number of Workers is 12. 

In terms of Memory usage, for the WordCount topology, as the number of threads increases, 
regardless of the number settings being the 3 or 12, the memory usage remains at around 
2,500,000 as shown in Fig. 24. But when the number of Workers is 3, the memory usage will 
increase dramatically when the number of threads in the three components exceeds 
(200,320,480). In the Top_N topology, as shown in Fig. 25, with the increase of the number of 
threads, memory usage gradually increases. When the threads is (15,12,3,12), memory usage 
reaches a maximum value. 

 
Fig. 22. CPU usage of different Executor number in 

WordCount 
 

 
Fig. 23. CPU usage of different Executor number in 

Top_N 
 

 

 
Fig. 24. Memory usage of different Executor number 

in WordCount 
 

 
Fig. 25. Memory usage of different Executor number 

in Top_N 
 

Given the number of Workers in topologies keeps the same and the total number of threads 
of all components unchanged, in the WordCount topology, if the number of threads in the 
three components is changed, the average throughput during the one-hour testing period is 
shown in Fig. 26. From the average throughput of the five configurations (5,8,12), (5,10,10), 
(5,12,8) and (7,10,8), (7,8,10), we find that when the number of threads assigned to the 
launching component stays constant, the average throughput in one hour remains the same 
regardless of how the two Bolt components are changed. When the number of threads assigned 



2990                                                                Sun et al.: Performance evaluation and analysis on Storm 

to Spout component increases, the system throughput also increases; when the number of 
threads assigned to Spout component decreases, the system throughput also decreases. It is 
observed that the system throughput is only related to the number of threads assigned to the 
delivery component spout. In the Top_N topology, as shown in Fig. 27, similar to the 
WordCount, the system throughput is positively correlated with the number of threads that 
transmit components. When the number of launching component is unchanged, the average 
throughput is constant regardless of how the three Bolt components are changed. 

 
Fig. 26. Throughput of different thread assignments 

in WordCount 
 

 
Fig. 27. Throughput of different thread assignments 

in Top_N 
 

In terms of system latency, for the WordCount topology, when the number of threads 
assigned to the three components is (5,8,12), (5,12,8), (5,10,10), (9,7,9), (12,5,8) , the data 
processing delay is maintained at 3.5 milliseconds in one hour as shown in Fig. 28. But when 
the number of threads assigned to the three components is (7, 10, 8) and (3, 10, 12), the latency 
is very large when Storm cluster starts and then gradually reduces to 3.5 milliseconds when  
running to 40 minutes. Consider that some of the other system processes may consume the 
CPU at the beginning of the operation, resulting in lower data processing efficiency, and when 
these systems are finished, the data processing is back to normal. In the Top_N topology, as 
shown in Fig. 29, when the system is running steadily, the data processing delay is maintained 
at 0.8 milliseconds. Also, when the number of threads is (5,2,1,6) and (9,2,1,2), the latency is 
very large and then gradually reduced to normal, the reason is similar to WordCount. It can be 
concluded that when the number of Workers and the total number of threads are unchanged, no 
matter how the threads are allocated to the three components, the system latency is unchanged, 
although the delay is mainly caused by the Bolt component (named split), but adding threads 
to it does not decrease the delay at all. 

 
Fig. 28. Latency of different thread assignments in 

WordCount 

 
Fig. 29. Latency of different thread assignments in 

Top_N 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                                          2991 

In terms of system utilization, as shown in Fig. 30 and Fig. 31, as the number of Workers 
and the total number of threads are unchanged, the average usage of the CPU during the 
one-hour testing period is virtually unchanged even if the thread assignment to the 
components is changed. When the Storm system runs the topology, the master node and the 
work node continuously allocate tasks and accept tasks, tracking and feedback operations on 
each Tuple, so CPU usage is unstable during topology processing. But the average utilization 
rate of CPUs is very small in one hour, which is 4.7%, 3.6%, 3.7%, 3.7%, 3.8%, 4.6%, 5.2%, 
4.4% respectively in WordCount topology, basically maintains between 3% and 5%. And 
1.5%, 1.6%, 1.5%, 1.5%,1.6%, 1.6% respectively in Top_N topology, maintains between 1% 
and 2%. As shown in Fig. 32 and Fig. 33, because the size of the memory occupied by each 
Worker in the work node is fixed, the system's memory usage is essentially constant when the 
number of Workers settings in the topology is unchanged, even if the thread allocation for the 
three components is adjusted. There are several configurations of memory usage that are 
slightly increased during the experiment, possibly due to the impact of other system programs. 

 
Fig. 30. CPU usage of different thread assignments in 

WordCount 
 

 
Fig. 31. CPU usage of different thread assignments in 

Top_N 
 

 

 
Fig. 32. Memory usage of different thread 

assignments in WordCount 
 
 

 
Fig. 33. Memory usage of different thread 

assignments in Top_N 
 

(2) Hardware Performance Test 
In the hardware performance test, as shown in Fig. 34 and Fig. 35, when using three 

different performance computers to run the same topology, the amount of data processed 
within one hour is 1320700, 1314680, 1317100 respectively in the WordCount topology and 
the average throughput within one hour is 366, 365, 366 Tuple/s. In the Top_N topology, the 
amount of data processed is 200080, 198140, 198580 respectively and all average throughput 



2992                                                                Sun et al.: Performance evaluation and analysis on Storm 

are 55 Tuple/s. Thus, when the amount of data processed by the system is not large, the 
hardware performance of each node will not affect the throughput of the Storm cluster. 

 

 
Fig. 34. Throughput of different hardware 

performance about WordCount 
 

 
Fig. 35. Throughput of different hardware 

performance about Top_N 
 

In terms of data processing latency, for the WordCount topology, as shown in Fig. 36, in an 
hour of testing, the data processing latency of DELL laptop (Intel (R) Core (TM) i5-2430M 
CPU @ 2.4GHz × 4, 8G) basically maintains between 7 and 8 milliseconds,  HP notebook’s 
(Intel (R) Core (TM) i7-7700HQ CPU @ 2.80GHz 2.81GHz, 8G) latency maintains at about 
3.4 milliseconds, DELL desktop (Intel Core i5-2400CPU @ 3.10GHz × 4, 4G) maintains at 
3.2 milliseconds. Also, in the Top_N topology, as shown in Fig. 37, the data processing 
latency of DELL laptop basically maintains at 2.75 milliseconds,  HP notebook’s latency 
maintains at about 0.68 milliseconds, DELL desktop maintains at 0.47 milliseconds. The 
average delay of DELL notebook with lowest CPU performance is much higher than the other 
two during the one-hour testing period. Although the memory of DELL desktop is only 4G, 
it’s data processing delay is almost half of the DELL notebook and is lower than the HP 
notebook within an hour. So compared to memory, CPU performance has a greater impact on 
data processing latency. 

 
Fig. 36. Latency of different hardware performance 

about WordCount 
 

 
Fig. 37. Latency of different hardware performance 

about Top_N 
 

(3) Robustness Test 
As shown in Fig. 38 and Fig. 39, in the first test, when one node is shut down after 20 

minutes, the system reduces the speed of data processing, because the system has to 
redistribute the task from the down node. The data processing speed resumes to normal 2 
minutes later. In the second test, we shut down two of nodes after 20 minutes, the outcome 
observed is almost the same as the first. The data processing rate becomes smaller in two 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                                          2993 

minutes, but lower than the first failure, because when two nodes do not perform the task, the 
master node needs to spend more system resources for task redistribution, so the data 
processing rate is lower than the one node failure. In the third test, when three of nodes are shut 
down after 20 minutes, data processing speed is declining, after two minutes of task 
redistribution, the speed of system processing data returns to normal. When running to 40 
minutes, we shut down three nodes agin. Because each node in the Storm cluster has no extra 
memory, the system can not achieve the task redistribution, resulting in Storm system failure 
to properly process the data. 

 
Fig. 38. Throught of robustness test about WordCount 

 

 
Fig. 39. Throught of robustness test about Top_N 

 
In terms of system latency, as shown in Fig. 40 and Fig. 41. At the beginning of the tests, 

closing one or two nodes, does not cause a sudden change to the system's calculation delay in 
the two minutes of task redistribution, but the delay gradually reduces as normal within one 
hour of test. When the system is running stable, they are basically maintained at about 3 
milliseconds in WordCount topology and 1 milliseconds in Top_N topology. But in the third 
test, when the three nodes are closed for 40 minutes, data processing delays are also abnormal. 
The Storm system has a strong fault tolerance, when some nodes fail, and the redistribution of 
tasks does not affect the system's calculation delay. But each node should leave extra memory 
space when the system is running, so that the system can have enough space to reallocate the 
task when some nodes behave abnormal. 

 
Fig. 40. Latency of robustness test about WordCount 

 

 
Fig. 41. Latency of robustness test about Top_N 

 

5.2 Result Analysis 
After analyzing the test results, we can conclude that: 
• Increasing the number of Workers in a topology alone does not improve system 

throughput. The throughput of the system has positive correlation to the number of 



2994                                                                Sun et al.: Performance evaluation and analysis on Storm 

threads assigned to each component and mainly related to the number of threads of 
components that emit data. 

• The latency in data processing is related to the number of Workers and the number of 
threads that assigned to each component. However, the impact is limited. Larger 
numbers of Worker and threads do not lead to a significant low latency. Therefore, a 
reasonable value is to be set according to different computing tasks. The processing 
latency is also affected by hardware performance and mainly related to the CPU 
performance. 

• Storm system handles faulty nodes quickly. Task redistribution has little impact on the 
data processing speed and does not increase the data processing latency. But each node 
should leave extra memory so that the system have enough space to reallocate the task 
when some nodes behave abnormal. 

6. Conclusion 
Big data stream computing helps organizations spot opportunities and risks from real time big 
data, and is being employed in many different application scenarios. Storm, one of the most 
common online stream computing platforms, is now used for computing big data stream, with 
response time ranging from milliseconds to sub-seconds. The performance of Storm plays a 
crucial role in many different application scenarios, however few studies were conducted to 
evaluate the performance of Storm. 

In this paper, we investigate the performance of Storm under different application scenarios. 
Our experimental results show that throughput and latency of Storm is greatly affect by the 
number of instances of each vertex in task topology, and the number of available resources of 
data center. 

The fault-tolerant mechanism of Storm works well in most big data stream computing 
environments. As a result, it is suggested that a dynamical task topology, an elastic scheduling 
framework, and a memory based fault-tolerant mechanism are necessory for providing high 
throughput and low latency services. 

In future work, we are interested in investigating the impact on Storm performance caused 
by the topology and algorithm complexity. Moreover, we plan to examine the behavior of 
Storm on receiving data from the cloud and its impact on performance. 

References 
[1] C. L. P. Chen, C. Y. Zhang, “Data-intensive applications, challenges, techniques and technologies: 

A survey on Big Data,” Information Sciences, vol. 275, pp. 314-347, Aug. 2014. 
Article (CrossRef Link) 

[2] D. W. Sun and H. Tang, “Fast-FFA: a fast online scheduling approach for big data stream 
computing with future features-aware,” International Journal of Bio-Inspired Computation, vol. 
10(3), pp. 205-217, Sep. 2017. Article (CrossRef Link) 

[3] A. Gani, A. Siddiqa, S. Shamshirband, F. Hanum, “A survey on indexing techniques for big data: 
taxonomy and performance evaluation,” Knowledge and Information Systems, vol. 46(2, pp. 
241-284), Feb. 2016. Article (CrossRef Link) 

[4] M. D. Assuncao, R. N. Calheiros, S. Bianchi, M. A. S. Netto, R. Buyya, “Big Data computing and 
clouds: Trends and future directions,” Journal of Parallel and Distributed Computing, vol. 79-80, 
pp. 3-15, May 2015. Article (CrossRef Link) 

[5] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, 
M. Fu, J. Donham, N. Bhagat, S. Mittal, D. Ryaboy, “Storm@twitter,” in Proc. of 2014 ACM 

https://doi.org/%2010.1016/j.ins.2014.01.015
https://doi.org/10.1504/IJBIC.2017.086717
https://doi.org/10.1007/s10115-015-0830-y
https://doi.org/10.1016/j.jpdc.2014.08.003


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                                          2995 

SIGMOD International Conference on Management of Data, SIGMOD 2014, ACM Press, pp. 
147-156, Jun. 2014. Article (CrossRef Link) 

[6] C. Li, J. Zhang, Y. Luo, “Real-time scheduling based on optimized topology and communication 
traffic in distributed real-time computation platform of storm,” Journal of Network and Computer 
Applications, vol. 87, pp. 100-115, Jun. 2017. Article (CrossRef Link) 

[7] T. Li, J. Tang, J. Xu, “Performance modeling and predictive scheduling for distributed stream data 
processing,” IEEE Transactions on Big Data, vol. 2(4), pp. 353-364, Dec. 2016.  
Article (CrossRef Link) 

[8] Q. Cai, L. Ma, M. Gong and D. Tian, “A survey on network community detection based on 
evolutionary computation,” International Journal of Bio-Inspired Computation, vol. 8(2), pp. 
84-98, May 2016. Article (CrossRef Link) 

[9] P. Novoa-Hernández, C. C. Corona and D. A. Pelta, “Self-adaptation in dynamic environments - a 
survey and open issues,” International Journal of Bio-Inspired Computation, vol. 8(1), pp. 1-13, 
Feb. 2016. Article (CrossRef Link) 

[10] H. B. Yan, D. W. Sun, S. Gao, and Z. B. Zhou, “Performance Analysis of Storm in a Real-World 
Big Data Stream Computing Environment,” in Proc. of 13th EAI International Conference on 
Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom 2017, 
Springer Press, in press, December 2017. 

[11] A. Mozaffari, N. L. Azad, “Empirical investigation and analysis of the computational potentials of 
bio-inspired nonlinear model predictive controllers: success and challenges,” International 
Journal of Bio-Inspired Computation, 9(1): 19-34, 2017. Article (CrossRef Link) 

[12] A. Ouannas, A. T. Azar, S. Vaidyanathan, “On a simple approach for Q-S synchronisation of 
chaotic dynamical systems in continuous-time,” International Journal of Computing Science and 
Mathematics, 8(1):20-27, 2017. Article (CrossRef Link) 

[13] M. Behroozifar, “Computational method for one-dimensional heat equation subject to non-local 
conditions,” International Journal of Computing Science and Mathematics, 8(2):157-165, 2017. 
Article (CrossRef Link) 

[14] Z. Cui, Y. Cao, X. Cai, J. Cai, J. Chen, “Optimal LEACH protocol with modified bat algorithm for 
big data sensing systems in Internet of Things,” Journal of Parallel and Distributed Computing， 
2017. Article (CrossRef Link). 

[15] X. Cai, H. Wang, Z. Cui, J. Cai, Y. Xue and L. Wang, “Bat Algorithm with Triangle-Flipping 
Strategy for Numerical Optimization,” International Journal of Machine Learning and 
Cybernetics, 9(2):199-215, 2018. Article (CrossRef Link) 

[16] M. Zhang, H. Wang, Z. Cui and J. Chen, “Hybrid Multi-Objective Cuckoo Search with Dynamical 
Local Search,” Memetic Computing, 2017. Article (CrossRef Link). 

[17] Z. Cui, B. Sun, G. Wang, Y. Xue, J. Chen, “A novel oriented cuckoo search algorithm to improve 
DV-Hop performance for cyber-physical systems,” Journal of Parallel and Distributed 
Computing, 103:42-52, 2017. Article (CrossRef Link) 

[18] R. Sivaraj, R. Devi Priya, “Bayesian-based parallel ant system for missing value estimation in 
large databases,” International Journal of Bio-Inspired Computation, 9(2): 114-120, 2017. 
Article (CrossRef Link) 

[19] X. Cai, X. Gao, Y. Xue, “Improved bat algorithm with optimal forage strategy and random 
disturbance strategy,” International Journal of Bio-inspired Computation, 8(4):205-214, 2016. 
Article (CrossRef Link) 

[20] P. Pongchairerks and V. Kachitvichyanukul “A two-level particle swarm optimisation algorithm 
for open-shop scheduling problem,” International Journal of Computing Science and Mathematics, 
vol. 7(6), pp. 575-585, Dec. 2016. Article (CrossRef Link) 

[21] G. Wang, X. Cai, Z. Cui, G. Min and J. Chen, “High Performance Computing for Cyber Physical 
Social Systems by Using Evolutionary Multi-Objective Optimization Algorithm,” IEEE 
Transactions on Emerging Topics in Computing, 2017. Article (CrossRef Link). 

[22] G. Yang and X. Zhang, “Task allocation algorithm for virtual design organisation in agile 
industrial design,” International Journal of Computing Science and Mathematics, vol. 8(3), pp. 
249-256, Jul. 2017. Article (CrossRef Link) 

https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1016/j.jnca.2017.03.007
https://doi.org/10.1109/TBDATA.2016.2616148
https://doi.org/10.1504/IJBIC.2016.076329
https://doi.org/10.1504/IJBIC.2016.074635
https://doi.org/10.1504/IJBIC.2017.081857
https://doi.org/10.1504/IJCSM.2017.083167
https://doi.org/10.1504/IJCSM.2017.083749
https://doi.org/10.1016/j.jpdc.2017.12.014
https://doi.org/10.1007/s13042-017-0739-8
https://doi.org/10.1007/s12293-017-0237-2
https://doi.org/10.1016/j.jpdc.2016.10.011
https://doi.org/10.1504/IJBIC.2017.083142
https://doi.org/10.1504/IJBIC.2016.078666
https://doi.org/10.1504/IJCSM.2016.081693
https://doi.org/10.1109/TETC.2017.2703784
https://doi.org/10.1504/IJCSM.2017.085727


2996                                                                Sun et al.: Performance evaluation and analysis on Storm 

[23] Storm, Article (CrossRef Link). 
[24] K. Kanoun, C. Tekin, D. Atienza, and M. Shaar, “Big-Data Streaming Applications Scheduling 

Based on Staged Multi-armed Bandits,” IEEE Transactions on Computers, vol. 65(12), pp. 
3591-3605, Dec. 2016. Article (CrossRef Link) 

[25] V. Cardellini, M. Nardelli, and D. Luzi, “Elastic stateful stream processing in storm,” in Proc. of 
2016 International Conference on High Performance Computing & Simulation, HPCS 2016, IEEE 
Press, pp. 583-590, Jul. 2016. Article (CrossRef Link) 

[26] Y. Peng, Y. Han, Y. Xiao, S. Ullah, “Heuristics for single machine scheduling problem with family 
setup times,” International Journal of Computing Science and Mathematics, 8(2):166-174, 2017. 
Article (CrossRef Link) 

[27] Y. Gu, and C. Q. Wu, “Performance analysis and optimization of distributed workflows in 
heterogeneous network environments,” IEEE Transactions on Computers, vol. 65(4), pp. 
1266-1282, Apr. 2016. Article (CrossRef Link) 

[28] Z. Wu and S. Wang, “The structural topology optimisation based on parameterised level-set 
method in isogeometric analysis,” International Journal of Computing Science and Mathematics, 
vol. 8(4), pp. 353-363, Aug. 2017. Article (CrossRef Link) 

[29] B. Lohrmann, P. Janacik, O. Kao, “Elastic Stream Processing with Latency Guarantees,” in Proc. 
of 2015 IEEE 35th International Conference on Distributed Computing Systems, ICDCS 2015, 
IEEE Press, pp. 399-410, Jul. 2015. Article (CrossRef Link) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://storm.apache.org/
https://doi.org/10.1109/TC.2016.2550454
https://doi.org/10.1109/HPCSim.2016.7568388
https://doi.org/10.1504/IJCSM.2017.083755
https://doi.org/10.1109/TC.2013.62
https://doi.org/10.1504/IJCSM.2017.085861
https://doi.org/10.1109/ICDCS.2015.48


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                                          2997 

 

 
 

Dawei Sun is currently an associate professor at the School of Information 
Engineering, China University of Geosciences, Beijing, P.R. China. He received his 
Ph.D. degree in computer science from Northeastern University, China in 2012, and 
finished the Postdoctoral position research at the department of computer science and 
technology of Tsinghua University, China in 2015. His current researches interests 
include big data computing, cloud computing, trust computing. 

 
 

Hongbin Yan is currently pursuing a master degree at China University of 
Geosciences, Beijing. His current research interests include big data streaming 
computing. 

 
 

Shang Gao received her Ph.D. degree in computer science from Northeastern 
University, Shenyang, China in 2000. She is currently a Lecturer at the School of 
Engineering and Information Technology, Deakin University, Geelong, Australia. Her 
current research interests include distributed collaboration, adaptive learning, and 
cloud computing. 

 

Zhangbing Zhou is a professor at the School of Information Engineering, China 
University of Geosciences (Beijing), China, and serves as an adjunct professor at the 
Computer Science department, TELECOM SudParis, France. He received his PhD 
from the Digital Enterprise Research Institute (DERI), National University of Ireland, 
Galway (NUIG). His research interests include process-aware information system, 
service oriented computing, spatial and temporal database, and sensor network 
middleware. 

 


