Browse > Article
http://dx.doi.org/10.7780/kjrs.2018.34.6.4.3

Precise Measurements of the Along-track Surface Deformation Related to the 2016 Kumamoto Earthquakes via Ionospheric Correction of Multiple-Aperture SAR Interferograms  

Baek, Won-Kyung (Department of Geoinformatics, University of Seoul)
Jung, Hyung-Sup (Department of Geoinformatics, University of Seoul)
Publication Information
Korean Journal of Remote Sensing / v.34, no.6_4, 2018 , pp. 1489-1501 More about this Journal
Abstract
In 2016 Kumamoto, Japan, the foreshocks of $M_j$ 6.5 and 6.4, mainshock of $M_j$ 7.3 besides more than 2,000 aftershocks occurred in succession. Large surface deformation occurred due to this serial earthquakes and three-dimensional measurements of the deformation have been presented for the study of fault structures (Baek, 2017). The 3d measurements retrieved from two ascending pairs (20160211_20160602, 20151119_20160616) and a descending pair (20160307_20160418) acquired from ALOS PALSAR-2. In order to avoid mixing ionospheric error components on along-track surface deformation, the descending multiple-aperture interferogram, which do not contain the deformation of aftershocks after 20160418, was utilized. For these reason, there was a temporal discrepancy of about 2 months in extracting the north-south deformation. In this study, we applied a directional filter based ionospheric correction to ascending multiple-aperture interferograms, in order to reduce this discrepancy and understand more accurate fault movements. As a result of the ionospheric correction, an additional displacement signal was observed nearby fault lines. The root-mean-squared errors compared to GPS were about 9.87, 8.13 cm respectively. These results show improvements of 4.8 and 6.4 times after ionospheric correction. We expected that these along-track measurements would be used to decide more accurate movements of faults related to the 2016 Kumamoto Earthquake.
Keywords
The 2016 Kumamoto Earthquake; Multiple-Aperture SAR Interferometry (MAI); Ionospheric correction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Mukunoki, T., K. Kasama, S. Murakami, H. Ikemi, R. Ishikura, T. Fujikawa, N. Yasufuku, and Y. Kitazono, 2016. Reconnaissance report on geotechnical damage caused by an earthquake with JMA seismic intensity 7 twice in 28 h, Kumamoto, Japan, Soils and Foundations, 56(6): 947-964.   DOI
2 San Diego Union-Tribune, 2016. Japan says recent earthquakes caused economic losses of up to $42 billion, http://www.sandiegouniontribune.com/ hoy-san-diego/sdhoy-japan-says-recent-earthquakescaused-economic-2016may24-story.html, Accessed on Sep. 5, 2018.
3 Strozzi, T., A. Luckman, T. Murray, U. Wegmuller, and C. L. Werner, 2002. Glacier motion estimation using SAR offset-tracking procedures, IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2384-2391.   DOI
4 Wegmuller, U., C. L. Werner, T. Strozzi, and A. Wiesmann, 2006. Ionospheric Electron Concentration Effects on SAR and InSAR, Proc. of 2006 International Geoscience and Remote Sensing Symposium, Denver, CO, Jul. 31-Aug. 4, vol. 1, pp. 3714-3717.
5 Zebker, H. A. and J. Villasenor, 1992. Decorrelation in interferometric radar echoes, IEEE Transactions on Geoscience and Remote Sensing, 30(5): 950-959.   DOI
6 Zhu, W., X. L. Ding, H. S. Jung, and Q. Zhang, 2017. Mitigation of ionospheric phase delay error for SAR interferometry: an application of FR-based and azimuth offset methods, Remote Sensing Letters, 8(1): 58-67.   DOI
7 Artemis, 2016. Kumamoto quake residential insurance claims paid hits $3.2bn, http://www.artemis.bm/blog/2016/06/30/kumamoto-quake-residentialinsurance-claims-paid-hits-3-2bn/, Accessed on Sep. 5, 2018.
8 Baek, W. K., 2017. Precise three-dimensional mapping of the 2016 Kumamoto earthquake through the integration of SAR interferometry and offset tracking, University of Seoul, Seoul, Korea (in Korean with English abstract).
9 Baek, W. K., H. S. Jung, S. H. Chae, and W. J. Lee, 2018b. Two-dimensional Velocity Measurements of Uversbreen Glacier in Svalbard Using TerraSAR-X Offset Tracking Approach, Korean Journal of Remote Sensing, 34(3): 495-506 (in Korean with English abstract).   DOI
10 Baek, W. K., H. S. Jung, and S. H. Chae, 2018a. Feasibility of ALOS2 PALSAR2 Offset-based Phase Unwrapping of SAR Interferogram in Large and Complex Surface Deformations, IEEE Access, 6(1): 45951-45960.   DOI
11 Bamler, R. and M. Eineder, 2005. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems, IEEE Geoscience and Remote Sensing Letters, 2(2): 151-155.   DOI
12 Bechor, N. B. and H. A. Zebker, 2006. Measuring twodimensional movements using a single InSAR pair, Geophysical Research Letters, 33(16).
13 Gray, L., I. Joughin, S. Tulaczyk, V. B. Spikes, R. Bindschadler, and K. Jezek, 2005. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry, Geophysical Research Letters, 32(3).
14 Chae, S. H., W. J. Lee, H. S. Jung, and L. Zhang, 2017. Ionospheric Correction of L-Band SAR Offset Measurements for the Precise Observation of Glacier Velocity Variations on Novaya Zemlya, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8): 3591-3603.   DOI
15 Fialko, Y., M. Simons, and D. Agnew, 2001. The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw 7.1 Hector Mine earthquake, California, from space geodetic observations, Geophysical Research Letters, 28(16): 3063-3066.   DOI
16 Geospatial information Authority of Japan, 2016a. 平成28年熊本地震に関する情報, http://www.gsi.go. jp/BOUSAI/H27-kumamoto-earthquake-index.html, Accessed on Sep. 5, 2018 (in Japanese).
17 Geospatial information Authority of Japan, 2016b. 平成28年(2016年)熊本地震, 地震予知連絡会会報, 第96巻, http://cais.gsi.go.jp/YOCHIREN/report/kaihou96/12_09.pdf, Accessed on Sep. 25, 2018 (in Japanese).
18 Goldstein, R. M. and C. L. Werner, 1998. Radar interferogram filtering for geophysical applications, Geophysical Research Letters, 25(21): 4035-4038.   DOI
19 Himematsu, Y. and M. Furuya, 2016. Fault source model for the 2016 Kumamoto earthquake sequence based on ALOS-2/PALSAR-2 pixel-offset data: evidence for dynamic slip partitioning, Earth, Planets and Space, 68(1): 169.   DOI
20 Japan Meteorological Agency, 2016. 平成28年(2016年)熊本地震, https://www.data.jma.go.jp/svd/eqev/data/2016_04_14_kumamoto/index.html, Accessed on Sep. 26, 2018.
21 Jung, H. S., W. J. Lee, and L. Zhang, 2014. Theoretical accuracy of along-track displacement measurements from multiple-aperture interferometry (MAI), Sensors, 14(9): 17703-17724.   DOI
22 Jo, M. J., H. S. Jung, J. S. Won, M. P. Poland, A. Miklius, and Z. Lu, 2015. Measurement of slowmoving along-track displacement from an efficient multiple-aperture SAR interferometry (MAI) stacking, Journal of Geodesy, 89(5): 411-425.   DOI
23 Jo, M. J., H. S. Jung, and S. H. Yun, 2017. Retrieving Precise Three-Dimensional Deformation on the 2014 M6. 0 South Napa Earthquake by Joint Inversion of Multi-Sensor SAR, Scientific Reports, 7(1): 5485.   DOI
24 Jung, H. S., J. S. Won, and S. W. Kim, 2009. An improvement of the performance of multiple-aperture SAR interferometry (MAI), IEEE Transactions on Geoscience and Remote Sensing, 47(8): 2859-2869.   DOI
25 Jung, H. S., Z. Lu, J. S. Won, M. P. Poland, and A. Miklius, 2011. Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: Application to the June 2007 eruption of Kilauea volcano, Hawaii, IEEE Geoscience and Remote Sensing Letters, 8(1): 34-38.   DOI
26 Jung, H. S., D. T. Lee, Z. Lu, and J. S. Won, 2013. Ionospheric correction of SAR interferograms by multiple-aperture interferometry, IEEE Transactions on Geoscience and Remote Sensing, 51(5): 3191-3199.   DOI
27 Jung, H. S., S. H. Yun, and M. J. Jo, 2015. An improvement of multiple-aperture SAR interferometry performance in the presence of complex and large line-of-sight deformation, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4): 1743-1752.   DOI
28 Jung, H. S. and S. M. Hong, 2017a. Mapping threedimensional surface deformation caused by the 2010 Haiti earthquake using advanced satellite radar interferometry, PLOS ONE, 12(11): e0188286.   DOI
29 Meyer, F., R. Bamler, N. Jakowski, and T. Fritz, 2006. The potential of low-frequency SAR systems for mapping ionospheric TEC distributions, IEEE Geoscience and Remote Sensing Letters, 3(4): 560-564.   DOI
30 Lee, W. J., H. S. Jung, S. H. Chae, and W. K. Baek, 2015. Enhancement of Ionospheric Correction Method Based on Multiple Aperture Interferometry, Korean Journal of Remote Sensing, 31(2): 101-110 (in Korean with English abstract).   DOI
31 Moya, L., F. Yamazaki, W. Liu, and T. Chiba, 2017. Calculation of coseismic displacement from lidar data in the 2016 Kumamoto, Japan, earthquake, Natural Hazards and Earth System Sciences, 17(1): 143.   DOI
32 Jung, H. S. and S. M. Hong, 2017b. Remarks on correcting ionospheric distortions in L-band radar interferometry, Geocarto International, 1-16.