• Title/Summary/Keyword: Multiple Channel

Search Result 2,116, Processing Time 0.032 seconds

Wave power extraction by multiple wave energy converters arrayed in a water channel resonator

  • Kim, Jeongrok;Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.178-186
    • /
    • 2021
  • The wave power extraction by multiple Wave Energy Converters (WECs) deployed in a Y-shaped Water Channel Resonator (WCR) has been investigated. A WCR consists of a long water channel, and a V-shaped wave guider installed at the entrance of a water channel. If the period of the incident waves coincides with the natural periods of the fluid in a WCR, resonance occurs, as a result, the internal fluid in a WCR is greatly amplified. To estimate the wave power by multiple WECs placed at the antinodal points in a WCR, the heave motion response, time-averaged power, and capture width ratio were calculated for several design parameters. Also, the systematic model tests were conducted in a 2D wave tank. The numerical results are in good agreement with the experimental data. It was verified that a WCR helps the WECs to produce electricity more effectively by amplifying the wave energy in a WCR.

Analysis on Bit Error Rate Performance of Negatively Asymmetric Binary Pulse Amplitude Modulation Non-Orthogonal Multiple Access in 5G Mobile Networks

  • Chung, Kyuhyuk
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.307-314
    • /
    • 2021
  • Recently, positively asymmetric binary pulse amplitude modulation (2PAM) has been proposed to improve the bit error rate (BER) performance of the weak channel gain user, with a tolerable BER loss of the strong channel gain user, for non-orthogonal multiple access (NOMA). However, the BER loss of the stronger channel gain user is inevitable in such positively asymmetric 2PAM NOMA scheme. Thus, we propose the negatively asymmetric 2PAM NOMA scheme. First, we derive closed-form expressions for the BERs of the negatively asymmetric 2PAM NOMA. Then, simulations demonstrate that for the stronger channel gain user, the BER of the proposed negatively asymmetric 2PAM NOMA improves, compared to that of the conventional positively asymmetric 2PAM NOMA. Moreover, we also show that for the weaker channel gain user, the BER of the proposed negatively asymmetric 2PAM NOMA is comparable to that of the conventional positively asymmetric 2PAM NOMA, over the power allocation range less than about 10 %.

Optimal Planar Array Architecture for Full-Dimensional Multi-user Multiple-Input Multiple-Output with Elevation Modeling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.234-244
    • /
    • 2017
  • Research interest in three-dimensional multiple-input multiple-output (3D-MIMO) beamforming has rapidly increased on account of its potential to support high data rates through an array of strategies, including sector or user-specific elevation beamforming and cell-splitting. To evaluate the full performance benefits of 3D and full-dimensional (FD) MIMO beamforming, the 3D character of the real MIMO channel must be modeled with consideration of both the azimuth and elevation domain. Most existing works on the 2D spatial channel model (2D-SCM) assume a wide range for the distribution of elevation angles of departure (eAoDs), which is not practical according to field measurements. In this paper, an optimal FD-MIMO planar array configuration is presented for different practical channel conditions by restricting the eAoDs to a finite range. Using a dynamic network level simulator that employs a complete 3D SCM, we analyze the relationship between the angular spread and sum throughput. In addition, we present an analysis on the optimal antenna configurations for the channels under consideration.

Adaptive Mode Switching in Correlated Multiple Antenna Cellular Networks

  • Lee, Chul-Han;Chae, Chan-Byoung;Vishwanath, Sriram;Heath, Jr., Robert W.
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.279-286
    • /
    • 2009
  • This paper proposes an adaptive mode switching algorithm between two strategies in multiple antenna cellular networks:A single-user mode and a multi-user mode for the broadcast channel. If full channel state information is available at the base station, it is known that a multi user transmission strategy would outperform all single-user transmission strategies. In the absence of full side information, it is unclear what the capacity achieving method is, and thus there are few criteria to decide which of the myriad possible methods performs best given a system configuration. We compare a single user transmission and a multi user transmission with linear receivers in this paper where the transmitter and the receivers have multiple antennas, and find that neither strategy dom inates the other. There is instead a transition point between the two strategies. Then, the mode switching point is determined both ana lytically and numerically for a multiple antenna cellular downlink with correlation between transmit antennas.

Optimization of Channel Capacity in MIMO Systems

  • Pham Van-Su;Le Minh Tuan;Yoon Giwan
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.172-175
    • /
    • 2005
  • In this paper, a new method to get the optimum channel capacity of a Multiple-Input Multiple­Output (MIMO) system is presented. The proposed method exploits the diagonal structure of channel matrix to maximize the channel capacity. The diagonal format of the channel matrix is formed by multiplying the transmitted signal with the pre-compensated channel PCC) matrix. Numerical simulations show that the proposed method exploiting the diagonal structure of channel matrix could significantly increase the system capacity compared with the system without applying the diagonal structure of channel matrix.

The performance estimation of Channel coding schemes in Wideband Code Division Multiple Access System with fading channel (페이딩 환경의 W-CDMA에서 채널부호화 방식의 성능평가)

  • 이종목;심용걸
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.165-168
    • /
    • 2000
  • The bit error rate(BER)of the data passed through Wideband-Code Division Multiple Access (W-CDMA) system with turbo-codes structure is presented. The performance of turbo-codes under W-CDMA system is estimated for various users and iteration numbers of decoding. The channel model is Additive White Gaussian Noise(AWGN) and Rayleigh fading channel. When iteration number increases, bit error probability of turbo-codes decreases. and when the number of users increase, bit error probability of turbo-codes increases.

  • PDF

Codebook based Direct Vector Quantization of MIMO Channel Matrix with Channel Normalization

  • Hui, Bing;Chang, KyungHi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.3
    • /
    • pp.155-157
    • /
    • 2014
  • In this paper, a novel codebook generation strategy is proposed. With the given codebooks, two codeword selection procedures are proposed and analyzed for generating the quantized multiple-input multiple-output (MIMO) channel state information (CSI). Furthermore, three different quantization and normalization strategies are analyzed. The simulation results suggest that the proposed 'quantized channel generation method 2' is the best strategy to reduce the quantization and normalization errors to generate the final quantized MIMO CSI.

Design of Multiple Channel Wireless Remote Control System for Unmanned Vehicle (무인차량용 다중채널 무선원격 제어시스템의 설계)

  • Kim, Jin-Kwan;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.489-494
    • /
    • 2014
  • In this paper, a design of multiple channel wireless remote control system for unmanned vehicle is proposed. One of serious problems of the previous wireless remote control system is that it does not work when a control channel is damaged in case of emergency because it's composed of single control channel. Therefore, we propose the multiple channel wireless remote system which is composed of a portable wireless remote controller and a stationary wireless remote controller. The portable wireless remote controller and stationary wireless remote controller are designed and the multiple channel wireless remote control system for unmanned vehicles in developed. By applying to the unmanned vehicle to check its performance. The wireless remote control system is tested. Emergency stop using the portable wireless remote controller is tested when the stationary wireless remote controller is damaged. Also, emergency stop using the stationary wireless remote controller is tested when the portable wireless remote controller is damaged. The result of emergency stop test shows satisfied performance.

An Efficient Channel Tracking Method in MIMO-OFDM Systems (MIMO-OFDM에서 효율적인 채널 추적 방식)

  • Jeon, Hyoung-Goo;Kim, Kyoung-Soo;Ahn, Ji-Whan;Serpedin, Erchin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.256-268
    • /
    • 2008
  • This paper proposes an efficient scheme to track the time variant channel induced by multi-path Rayleigh fading in mobile wireless Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems with null sub-carriers. In the proposed method, a blind channel response predictor is designed to cope with the time variant channel. The proposed channel tracking scheme consists of a frequency domain estimation approach that is coupled with a Minimum Mean Square Error (MMSE) time domain estimation method, and does not require any matrix inverse calculation during each OFDM symbol. The main attributes of the proposed scheme are its reduced computational complexity and good tracking performance of channel variations. The simulation results show that the proposed method exhibits superior performance than the conventional channel tracking method [4] in time varying channel environments. At a Doppler frequency of 100Hz and bit error rates (BER) of 10-4, signal-to-noise power ratio (Eb/N0) gains of about 2.5dB are achieved relative to the conventional channel tracking method [4]. At a Doppler frequency of 200Hz, the performance difference between the proposed method and conventional one becomes much larger.

Channel Heterogeneity Aware Channel Assignment for IEEE 802.11 Multi-Radio Multi-Rate Wireless Networks (IEEE 802.11 다중 라디오 다중 전송률 무선 네트워크를 위한 채널 이질성 인지 채널 할당)

  • Kim, Sok-Hyong;Kim, Dong-Wook;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11A
    • /
    • pp.870-877
    • /
    • 2011
  • IEEE 802.11 devices are widely used, and terminals can be equipped with multiple IEEE 802.11 interfaces as low-cost IEEE 802.11 devices are deployed. The off-the-shelf IEEE 802.11 devices provide multiple channels and multiple data rates. In practical multi-channel networks, since there is channel heterogeneity which indicates that channels have different signal characteristics for the same node, channels should be efficiently assigned to improve network capacity. In addition, in multi-rate networks, low-rate links severely degrade the performance of high-rate links on the same channel, which is known as performance anomaly. Therefore, in this paper, we propose a heterogeneity aware channel assignment (HACA) algorithm that improves network performance by reflecting channel heterogeneity and performance anomaly. Through NS-2 simulations, we validate that the HACA algorithm shows improved performance compared with existing channel assignment algorithms that do not reflect channel heterogeneity.