DOI QR코드

DOI QR Code

Channel Heterogeneity Aware Channel Assignment for IEEE 802.11 Multi-Radio Multi-Rate Wireless Networks

IEEE 802.11 다중 라디오 다중 전송률 무선 네트워크를 위한 채널 이질성 인지 채널 할당

  • Received : 2011.10.21
  • Published : 2011.11.30

Abstract

IEEE 802.11 devices are widely used, and terminals can be equipped with multiple IEEE 802.11 interfaces as low-cost IEEE 802.11 devices are deployed. The off-the-shelf IEEE 802.11 devices provide multiple channels and multiple data rates. In practical multi-channel networks, since there is channel heterogeneity which indicates that channels have different signal characteristics for the same node, channels should be efficiently assigned to improve network capacity. In addition, in multi-rate networks, low-rate links severely degrade the performance of high-rate links on the same channel, which is known as performance anomaly. Therefore, in this paper, we propose a heterogeneity aware channel assignment (HACA) algorithm that improves network performance by reflecting channel heterogeneity and performance anomaly. Through NS-2 simulations, we validate that the HACA algorithm shows improved performance compared with existing channel assignment algorithms that do not reflect channel heterogeneity.

IEEE 802.11 장비가 널리 사용되고 있으며, 저비용 IEEE 802.11 장비들이 보급됨에 따라 단말들은 다중 IEEE 802.11 라디오를 장착할 수 있게 되었다. 최신 IEEE 802.11 장비들은 다수 채널 (multi-channel)과 전송률 (multi-rate)을 제공한다. 실제 다중 채널 네트워크에서는 같은 노드에 대해 채널들이 서로 다른 신호 특성을 가지는 채널 이질성 (channel heterogeneity)이 있으므로, 네트워크 용량을 향상시키기 위해 다수의 채널을 효율적으로 할당해야 한다. 또한, 다중 전송률 네트워크에서는 같은 채널 상의 낮은 전송률 링크가 높은 전송률 링크의 성능을 심각히 저하시키는 성능 이상 (performance anomaly) 현상이 발생한다. 따라서, 본 논문에서는 채널 이질성과 성능 이성을 반영하여 네트워크 성능을 향상시키는 HACA (Heterogeneity Aware Channel Assignment) 알고리즘을 제안한다. NS-2 시뮬레이션을 통해 HACA 알고리즘이 채널 이질성을 반영하지 못하는 기존 채널 할당 알고리즘에 비해 향상된 성능을 보임을 검증하였다.

Keywords

References

  1. IEEE 802.11-2007, "IEEE Standard - Part 11: Wireless LAN Medium Access Control and Physical Layer Specifications," Jun. 2007
  2. A. Raniwala and T. Chiueh, "Architecture and Algorithms for an IEEE 802.11-Based Multi-Channel Wireless Mesh Network," Proc.IEEE INFOCOM, 2005
  3. A. Dhananjay, H. Zhang, J. Li, and L. Subramanian, "Practical, Distributed Channel Assignment and Routing in Dual-radio Mesh Networks," Proc. ACM SIGCOM, 2009
  4. S. Avallone, I. F. Akyildiz, and G. Ventre, "A Channel and Rate Assignment Algorithm and a Layer-2.5 Forwarding Paradigm for Multi-Radio Wireless Mesh Networks", IEEE/ACM Trans. Networking, vol. 17, no. 1, pp. 267-280, Feb. 2009 https://doi.org/10.1109/TNET.2008.918091
  5. A.H.M. Rad and V. Wong, "Joint Logical Topology Design, Interface Assignment, Channel Allocation, and Routing for Multi-Channel Wireless Mesh Networks," IEEE Trans. Wireless Comm., vol. 6, no. 12, pp 4432-4440, Dec. 2007 https://doi.org/10.1109/TWC.2007.060312
  6. A.P. Subramanian, J. Cao, C. Sung, and S.R. Das, "Understanding Channel and Interface Heterogeneity in Multi-channel Multi-radio Wireless Mesh Networks," Proc. PAM, 2009
  7. H. Rahul, F. Edalat, D. Katabi, and C. Sodini, "Frequency-Aware Rate Adaptation and MAC Protocols," Proc. ACM MOBICOM, 2009.
  8. M. Heusse, F. Rousseu, G. Berger-Sabbatel, and A. Duda, "Performance Anomaly of 802.11b," Proc. IEEE INFOCOM, 2003
  9. D.Y. Yang, T.J. Lee, K.H. Jang, J.B. Chang, and S. Choi, "Performance Enhancement of Multirate IEEE 802.11 WLANs with Geographically Scattered Stations," IEEE Trans. Mobile Computing, vol. 5, no. 7, pp. 906-919, Jul. 2006 https://doi.org/10.1109/TMC.2006.101
  10. P. Bahl, R. Chandra , P. Lee , V. Misra , J. Padhye , D. Rubenstein, and Y. Yu, "Opportunistic Use of Client Repeaters to Improve Performance of WLANs, IEEE/ACM Trans. Networking, vol. 17, no. 4, pp. 1160-1171, Aug. 2009 https://doi.org/10.1109/TNET.2009.2026414
  11. T. Kuang, Q. Wu, and C. Williamson, "MRMC: A Multi-Rate Multi-Channel MAC Protocol for Multi-Radio Wireless LANs," in Proc. of WiNCS, 2005
  12. N. Niranjan, S. Pandey, and A. Ganz, "Design and Evaluation of Multichannel Multirate Wireless Networks," ACM/Kluwer Mobile Networking and Applications, vol. 11, no. 5, pp. 697-709, Oct. 2006 https://doi.org/10.1007/s11036-006-7796-7
  13. M. Genetzakis and V.A. Siris, "A Contention-Aware Routing Metric for Multi-Rate Multi-Radio Mesh Networks," Proc. IEEE SECON 2008
  14. NS Official Website, http://www.isi.edu/nsnam/ns/
  15. Cisco Aironet, http://www.cisco.com/