• Title/Summary/Keyword: Multilevel Converters

Search Result 78, Processing Time 0.022 seconds

Cascaded Boost Multilevel Converter for Distributed Generation Systems

  • Kim, Ki-Mok;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.70-71
    • /
    • 2017
  • This paper presents a new cascaded boost multilevel converter topology for distributed generation (DG) systems. Most of DG systems, such as photovoltaic (PV), wind turbine and fuel cells, normally require the complex structure power converters, which makes the system expensive, complex and hard to control. However, the proposed converter topology can generate a much higher output voltage just by using the standard low-voltage switch devices and low voltage DC-sources in a simplified structure, also enhancing the reliability of the switch devices. Simulation and experimental results with a 1.2kW system are presented to validate the proposed topology and control method.

  • PDF

Discontinuous PWM Scheme for Switching Losses Reduction in Modular Multilevel Converters

  • Jeong, Min-Gyo;Kim, Seok-Min;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1490-1499
    • /
    • 2017
  • The modular multilevel converter (MMC) is generally considered to be a promising topology for medium-voltage and high-voltage applications. However, in order to apply it to high-power applications, a huge number of switching devices is essential. The numerous switching devices lead to considerable switching losses, high cost and a larger heat sink for each of the switching device. In order to reduce the switching losses of a MMC, this paper analyzes the performance of the conventional discontinuous pulse-width modulation (DPWM) method and its efficiency. In addition, it proposes a modified novel DPWM method for advanced switching losses reduction. The novel DPWM scheme includes an additional rotation method for voltage-balancing and power distribution among sub modules (SMs). Simulation and experimental results verify the effectiveness and performance of the proposed modulation method in terms of its switching losses reduction capability.

Performance Evaluation of Circulating Current Controllers in Modular Multilevel Converters (MMC의 순환 전류 제어기의 성능 비교 분석)

  • Jo, Yun-Jae;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.73-74
    • /
    • 2014
  • 본 논문은 모듈러 멀티 레벨 컨버터 시스템에서 직류단과 레그 사이에 흐르는 순환 전류의 고조파 성분을 억제하기 위한 전류제어기들의 성능을 분석한다. 비례 적분 제어기, 공진 제어기, 반복 제어기의 성능을 PSIM 시뮬레이션을 통해 비교 분석한다.

  • PDF

Power Flow Control of Four Channel Resonant Step-Down Converters

  • Litvani, Lilla;Hamar, Janos
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1393-1402
    • /
    • 2019
  • This paper proposes a new power flow control method for soft-switched, four channel, five level resonant buck dc-dc converters. These converters have two input channels, which can be supplied from sources with identical or different voltages, and four output channels with arbitrary output voltages. They are specially designed to supply multilevel inverters. The design methodology for their power flow control has been developed considering a general case when the input voltages, output voltages and loads can be asymmetrical. A special emphasize is paid to the limitations and restrictions of operation. The theoretical studies are confirmed by numerical simulations and laboratory tests carried out at various operation points. Exploiting the advantages of the newly proposed power control strategy, the converter can supply five level inverters in dc microgrids, active filters, power factor correctors and electric drives. They can also play an interfacing role in renewable energy systems.

Non-equal DC link Voltages in a Cascaded H-Bridge with a Selective Harmonic Mitigation-PWM Technique Based on the Fundamental Switching Frequency

  • Moeini, Amirhossein;Iman-Eini, Hossein;Najjar, Mohammad
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.106-114
    • /
    • 2017
  • In this paper, the Selective Harmonic Mitigation-PWM (SHM-PWM) method is used in single-phase and three-phase Cascaded H-Bridge (CHB) inverters in order to fulfill different power quality standards such as EN 50160, CIGRE WG 36-05, IEC 61000-3-6 and IEC 61000-2-12. Non-equal DC link voltages are used to increase the degrees of freedom for the proposed SHM-PWM technique. In addition, it will be shown that the obtained solutions become continuous and without sudden changes. As a result, the look-up tables can be significantly reduced. The proposed three-phase modulation method can mitigate up to the 50th harmonic from the output voltage, while each switch has just one switching in a fundamental period. In other words, the switching frequency of the power switches are limited to 50 Hz, which is the lowest switching frequency that can be achieved in the multilevel converters, when the optimal selective harmonic mitigation method is employed. In single-phase mode, the proposed method can successfully mitigate harmonics up to the 50th, where the switching frequency is 150 Hz. Finally, the validity of the proposed method is verified by simulations and experiments on a 9-level CHB inverter.

A New Multi Level High Gain Boost DC-DC Converter with Wide Input Voltage Range and Reduced Stress Voltage Capability (넓은 입력 전압 범위와 감소된 스트레스 전압 기능성을 갖는 새로운 승압형 멀티레벨 DC-DC 컨버터)

  • Anvar, Ibadullaev;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.133-141
    • /
    • 2020
  • The use of high-gain-voltage step-up converters for distributed power generation systems is being popularized because of the need for new energy generation and power conversion technologies. In this study, a new constructed high-gain-boost DC-DC converter was proposed to coordinate low voltage output DC sources, such as PV or fuel cell systems, with high DC bus (380 V) lines. Compared with traditional boost DC-DC converters, the proposed converter can create higher gain and has wider input voltage range and lower voltage stress for power semiconductors and passive elements. Moreover, the proposed topology produces multilevel DC voltage output, which is the main advantage of the proposed topology. Steady-state analysis in continuous conduction mode of the proposed converter is discussed in detail. The practicability of the proposed DC-DC converter is presented by experimental results with a 300 W prototype converter.

Single Phase Five Level Inverter For Off-Grid Applications Constructed with Multilevel Step-Up DC-DC Converter (멀티레벨 승압 DC-DC 컨버터와 구성된 독립형 부하를 위한 단상 5레벨 인버터)

  • Anvar, Ibadullaev;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.319-328
    • /
    • 2020
  • The recent use of distributed power generation systems constructed with DC-DC converters has become extremely popular owing to the rising need for environment friendly energy generation power systems. In this study, a new single-phase five-level inverter for off-grid applications constructed with a multilevel DC-DC step-up converter is proposed to boost a low-level DC voltage (36 V-64 V) to a high-level DC bus (380 V) and invert and connect them with a single-phase 230 V rms AC load. Compared with other traditional multilevel inverters, the proposed five-level inverter has a reduced number of switching devices, can generate high-quality power with lower THD values, and has balanced voltage stress for DC capacitors. Moreover, the proposed topology does not require multiple DC sources. Finally, the performance of the proposed topology is presented through the simulation and experimental results of a 400 W hardware prototype.

Predictive Current Control for Multilevel Cascaded H-Bridge Inverters Based on a Deadbeat Solution

  • Qi, Chen;Tu, Pengfei;Wang, Peng;Zagrodnik, Michael
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.76-87
    • /
    • 2017
  • Finite-set predictive current control (FS-PCC) is advantageous for power converters due to its high dynamic performance and has received increasing interest in multilevel inverters. Among multilevel inverter topologies, the cascaded H-bridge (CHB) inverter is popular and mature in the industry. However, a main drawback of FS-PCC is its large computational burden, especially for the application of CHB inverters. In this paper, an FS-PCC method based on a deadbeat solution for three-phase zero-common-mode-voltage CHB inverters is proposed. In the proposed method, an inverse model of the load is utilized to calculate the reference voltage based on the reference current. In addition, a cost function is directly expressed in the terms of the voltage errors. An optimal control actuation is selected by minimizing the cost function. In the proposed method, only three instead of all of the control actuations are used for the calculations in one sampling period. This leads to a significant reduction in computations. The proposed method is tested on a three-phase 5-level CHB inverter. Simulation and experimental results show a very similar and comparable control performance from the proposed method compared with the traditional FS-PCC method which evaluates the cost function for all of the control actuations.

Development of 3300V 1MVA Multilevel Inverter using Cascaded H-Bridge Cell (3300V 1MVA H-브릿지 멀티레벨 인버터 개발)

  • Park Y.M.;Kim Y.D.;Lee H.W.;Lee S.H.;Seo K.D.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.593-597
    • /
    • 2003
  • Multilevel power conversion technology has received increasing attention recently for high power applications. The converters with the technology are suitable for high voltage and high power applications due to their ability to synthesize waveforms with better harmonic spectrum and apply for the high voltage equipment with a limited voltage rating of device. In the family of multilevel inverters, the topologies based on cascaded H-bridges are particularly attractive because of their modularity and simplicity of control. This paper presents multilevel inverter with cascaded H-bridge for large-power motor drives. The main features of this drive 1) reduce harmonic injection 2) can generate near-sinusoidal voltages, 3) have almost no common-mode voltage; 4) are low dv/dt at output voltage; 5)do not generate significant over-voltage on motor terminal; The topology of the developed product is presented and the feasibility study of the inverter on 3300v 1MVA 7-level H-bridge type was tarried out with experiments.

  • PDF