• Title/Summary/Keyword: Multilayer Graphene

Search Result 38, Processing Time 0.026 seconds

BIocompatible Reduced Graphene Oxide Multilayers for Neural Interfaces

  • Kim, Seong-Min;Ju, Pil-Jae;An, Guk-Mun;Kim, Byeong-Su;Yun, Myeong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.278.1-278.1
    • /
    • 2013
  • Among the prerequisites for stable neural interfacing are the long-term stability of electrical performance of and the excellent biocompatibility of conducting materials in implantable neural electrodes. Reduced graphene oxide offers a great potential for a variety of biomedical applications including biosensors and, particularly, neural interfaces due to its superb material properties such as high electrical conductivity, decent optical transparency, facile processibility, and etc. Nonetheless, there have been few systematic studies on the graphene-based neural interfaces in terms of biocompatibility of electrode materials and long term stability in electrical characteristics. In this research, we prepared the primary culture of rat hippocampal neurons directly on reduced graphene oxide films which is chosen as a model electrode material for the neural electrode. We observed that the viability of primary neuronal culture on the present structure is minimally affected by nanoscale graphene flakes below. These results implicate that the multilayer films of reduced graphene oxides can be utilized for the next-generation neural interfaces with decent biocompatibility and outstanding electrical performance.

  • PDF

Effects of Au Nanoparticle Monolayer on or Under Graphene for Surface Enhanced Raman Scattering

  • Kim, B.Y.;Jung, J.H.;Sohn, I.Y.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.636-636
    • /
    • 2013
  • Since first discovery of strong Raman spectrum of molecules adsorbed on rough noble metal, surface enhanced Raman scattering (SERS) has been widely used for detection of molecules with low concentration. Surface plasmons at noble metal can enhance Raman spectrum and using Au nanostructures as substrates of SERS has advantages due to it has chemical stability and biocompatibility. However, the photoluminescence (PL) background from Au remains a problem because of obtaining molecular vibration information. Recently, graphene, two-dimensional atomic layer of carbon atoms, is also well known as PL quenchers for electronic and vibrational excitation. In this study, we observed SERS of single layer graphene on or under monolayer of Au nanoparticles (NPs). Single layer graphene is grown by chemical vapor deposition and transferred onto or under the monolayer of Au NPs by using PMMA transfer method. Monolayer of Au NPs prepared using Langmuir-Blodgett method on or under graphene surface provides closed and well-packed monolayer of Au NPs. Scanning electron microscopy (SEM) and Raman spectroscopy (WItec, 532 nm) were performed in order to confirm effects of Au NPs on enhanced Raman spectrum. Highly enhanced Raman signal of graphene by Au NPs were observed due to many hot-spots at gap of closed well-packed Au NPs. The results showed that single layer graphene provides larger SERS effects compared to multilayer graphene and the enhancement of the G band was larger than that of 2D band. Moreover, we confirm the appearance of D band in this study that is not clear in normal Raman spectrum. In our study, D band appearance is ascribed to the SERS effect resulted from defects induced graphene on Au NPs. Monolayer film of Au NPs under the graphene provided more highly enhanced graphene Raman signal compared to that on the graphene. The Au NPs-graphene SERS substrate can be possibly applied to biochemical sensing applications requiring highly sensitive and selective assays.

  • PDF

Percolative Electrical Conductivity of Platy Alumina/Few-layer Graphene Multilayered Composites

  • Choi, Ki-Beom;Kim, Jong-Young;Lee, Sung-Min;Lee, Kyu-Hyoung;Yoon, Dae Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.257-260
    • /
    • 2017
  • In this work, we present a facile one-pot synthesis of a multilayer-structured platy alumina/few-layer graphene nanocomposite by planetary milling and hot pressing. The sintered composites have electrical conductivity exhibiting percolation behavior (threshold ~ 0.75 vol.%), which is much lower than graphene oxide/ceramic composites (> 3.0 vol.%). The conductivity data are well-described by the percolation theory, and the fitted exponent values are estimated to be 1.65 and 0.93 for t and q, respectively. The t and q values show conduction mechanisms intermediate between 2D- and 3D, which originates from quantum tunneling between nearest neighbored graphenes.

Study of Plasma Treatments to Increase Work Function of Multilayer Graphene Film

  • Maeng, Min-Jae;Kim, Ji-Hoon;Kwon, Dae-Gyeon;Hong, Jong-Am;Park, Yongsup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.198.2-198.2
    • /
    • 2014
  • We investigated change of the electronic structure, chemical states and elements ratio in graphene film by using photoelectron spectroscopy (PES). The graphene electrode has attracted considerable interest due to its possible applications in flexible organic light emitting diodes (F-OLEDs). However, to use the graphene for OLEDs, sufficient increase of work function is required, that is related with hole injection barrier. Plasma treatment is one of the most widely used method in OLEDs to increase the work function of the anode such as indium tin oxide (ITO). In this work, we used the plasma treatment, which is generated by various gas types such as O2, and Ar to increase the work function of the graphene film. From these results, we discuss the relation among the change of work function, plasma power, plasma treatment time and gas types.

  • PDF

Nonlinear bending of multilayer functionally graded graphene-reinforced skew microplates under mechanical and thermal loads using FSDT and MCST: A study in large deformation

  • J. Jenabi;A.R. Nezamabadi;M. Karami Khorramabadi
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.219-232
    • /
    • 2024
  • In current study, for the first time, Nonlinear Bending of a skew microplate made of a laminated composite strengthened with graphene nanosheets is investigated. A mixture of mechanical and thermal stresses is applied to the plate, and the reaction is analyzed using the First Shear Deformation Theory (FSDT). Since different percentages of graphene sheets are included in the multilayer structure of the composite, the characteristics of the composite are functionally graded throughout its thickness. Halpin-Tsai models are used to characterize mechanical qualities, whereas Schapery models are used to characterize thermal properties. The microplate's non-linear strain is first calculated by calculating the plate shear deformation and using the Green-Lagrange tensor and von Karman assumptions. Then the elements of the Couple and Cauchy stress tensors using the Modified Coupled Stress Theory (MCST) are derived. Next, using the Hamilton Principle, the microplate's governing equations and associated boundary conditions are calculated. The nonlinear differential equations are linearized by utilizing auxiliary variables in the nonlinear solution by applying the Frechet approach. The linearized equations are rectified via an iterative loop to precisely solve the problem. For this, the Differential Quadrature Method (DQM) is utilized, and the outcomes are shown for the basic support boundary condition. To ascertain the maximum values of microplate deflection for a range of circumstances-such as skew angles, volume fractions, configurations, temperatures, and length scales-a parametric analysis is carried out. To shed light on how the microplate behaves in these various circumstances, the resulting results are analyzed.

Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition

  • Choi, HongKyw;Jeong, Hu Young;Lee, Dae-Sik;Choi, Choon-Gi;Choi, Sung-Yool
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.186-189
    • /
    • 2013
  • We report a highly sensitive $NO_2$ gas sensor based on multi-layer graphene (MLG) films synthesized by a chemical vapor deposition method on a microheater-embedded flexible substrate. The MLG could detect low-concentration $NO_2$ even at sub-ppm (<200 ppb) levels. It also exhibited a high resistance change of ~6% when it was exposed to 1 ppm $NO_2$ gas at room temperature for 1 min. The exceptionally high sensitivity could be attributed to the large number of $NO_2$ molecule adsorption sites on the MLG due to its a large surface area and various defect-sites, and to the high mobility of carriers transferred between the MLG films and the adsorbed gas molecules. Although desorption of the $NO_2$ molecules was slow, it could be enhanced by an additional annealing process using an embedded Au microheater. The outstanding mechanical flexibility of the graphene film ensures the stable sensing response of the device under extreme bending stress. Our large-scale and easily reproducible MLG films can provide a proof-of-concept for future flexible $NO_2$ gas sensor devices.

A Reconfigurable Multilayer Substrate Antenna for Aerospace Applications

  • amine, Ksiksi Mohamed;azizi, Mohamed karim;Gharsallah, Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.358-361
    • /
    • 2021
  • In this paper, we have simulated a rectangular microstrip patch antenna for aerospace applications based on graphen as a conductor and a multilayer substrate .as a result of the use of the graphen patch we obtained a reconfigurable antenna on the frequency range (0.6-0.7 terahertz) with a gain up to 12 db. The simulation of this antenna has been performed by using CST Microwave Studio, which is a commercially available finite integral based electromagnetic simulator.

A Study on Growth of Graphene/metal Microwires and Their Electrical Properties (금속/그래핀 이중 구조 와이어의 합성 및 전기적 특성 연구)

  • Jeong, Minhee;Kim, Dongyeong;Rho, Hokyun;Shin, Han-Kyun;Lee, Hyo-Jong;Lee, Sang Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.67-71
    • /
    • 2021
  • In this study, graphene layer was grown on metal microwire using chemical vapor deposition. The difference of carbon solubility between copper and nickel resulted in the formation of mono-layer and multi-layer graphene were formed on the surfaces of copper and nickel microwires, respectively. During the growth of graphene at high temperature, copper and nickel were recrytallized and the grain size increased. The ampacity of graphene/copper microwire was improved by approximately 27%, 1.91×105 A/㎠, compared to pristine copper microwire. Similar to this behavior, the ampacity of multilayer graphene/nickel microwire was 4.41×104 A/㎠ which is about about 36% improved compared to the pure nickel microwire. The excellent electrical properties of graphene/metal composites are beneficial for supplying the electrical energy to the high-power electronic devices and equipment.

Synthesis of Three-Dimensional Graphene Using Porous Nickel Nanostructure (다공성 니켈 나노 구조체를 이용한 3차원 그래핀의 합성)

  • Song, Wooseok;Myung, Sung;Lee, Sun Sook;Lim, Jongsun;An, Ki-Seok
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.151-155
    • /
    • 2016
  • Graphene has been a valuable candidate for use as electrodes for supercapacitors. In order to improve the surface area of graphene, three-dimensional graphene was synthesized on porous Ni nanostructure using thermal chemical vapor deposition and microwave plasma chemical vapor deposition. The structural and chemical characterization of synthesized graphene was performed by scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was confirmed that three-dimensional and high-crystalline multilayer graphene onto various substrates was synthesized successfully.

On vibration and flutter of shear and normal deformable functionally graded reinforced composite plates

  • Abdollahi, Mahdieh;Saidi, Ali Reza;Bahaadini, Reza
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.437-452
    • /
    • 2022
  • For the first time, the higher-order shear and normal deformable plate theory (HOSNDPT) is used for the vibration and flutter analyses of the multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) plates under supersonic airflow. For modeling the supersonic airflow, the linear piston theory is adopted. In HOSNDPT, Legendre polynomials are used to approximate the components of the displacement field in the thickness direction. So, all stress and strain components are encountered. Either uniform or three kinds of non-uniform distribution of graphene platelets (GPLs) into polymer matrix are considered. The Young modulus of the FG-GPLRC plate is estimated by the modified Halpin-Tsai model, while the Poisson ratio and mass density are determined by the rule of mixtures. The Hamilton's principle is used to obtain the governing equations of motion and the associated boundary conditions of the plate. For solving the plate's equations of motion, the Galerkin approach is applied. A comparison for the natural frequencies obtained based on the present investigation and those of three-dimensional elasticity theory shows a very good agreement. The flutter boundaries for FG-GPLRC plates based on HOSNDPT are described and the effects of GPL distribution patterns, the geometrical parameters and the weight fraction of GPLs on the flutter frequencies and flutter aerodynamic pressure of the plate are studied in detail. The obtained results show that by increasing 0.5% of GPLs into polymer matrix, the flutter aerodynamic pressure increases approximately 117%, 145%, 166% and 196% for FG-O, FG-A, UD and FG-X distribution patterns, respectively.