Browse > Article
http://dx.doi.org/10.5714/CL.2013.14.3.186

Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition  

Choi, HongKyw (Electronics and Telecommunications Research Institute)
Jeong, Hu Young (Central Research Facilities and School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology)
Lee, Dae-Sik (Electronics and Telecommunications Research Institute)
Choi, Choon-Gi (Electronics and Telecommunications Research Institute)
Choi, Sung-Yool (Department of Electrical Engineering and Graphene Research Center, Korea Advanced Institute of Science and Technology)
Publication Information
Carbon letters / v.14, no.3, 2013 , pp. 186-189 More about this Journal
Abstract
We report a highly sensitive $NO_2$ gas sensor based on multi-layer graphene (MLG) films synthesized by a chemical vapor deposition method on a microheater-embedded flexible substrate. The MLG could detect low-concentration $NO_2$ even at sub-ppm (<200 ppb) levels. It also exhibited a high resistance change of ~6% when it was exposed to 1 ppm $NO_2$ gas at room temperature for 1 min. The exceptionally high sensitivity could be attributed to the large number of $NO_2$ molecule adsorption sites on the MLG due to its a large surface area and various defect-sites, and to the high mobility of carriers transferred between the MLG films and the adsorbed gas molecules. Although desorption of the $NO_2$ molecules was slow, it could be enhanced by an additional annealing process using an embedded Au microheater. The outstanding mechanical flexibility of the graphene film ensures the stable sensing response of the device under extreme bending stress. Our large-scale and easily reproducible MLG films can provide a proof-of-concept for future flexible $NO_2$ gas sensor devices.
Keywords
graphene; $NO_2$; gas sensor; chemical vapor deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lu G, Ocola LE, Chen J. Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes. Adv Mater, 21, 2487 (2009). http://dx.doi.org/10.1002/adma.200803536.   DOI   ScienceOn
2 Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH. Practical chemical sensors from chemically derived graphene. ACS Nano, 3, 301 (2009). http://dx.doi.org/10.1021/nn800593m.   DOI   ScienceOn
3 Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed, 49, 2154 (2010). http://dx.doi.org/10.1002/anie.200905089.   DOI   ScienceOn
4 Joshi RK, Gomez H, Alvi F, Kumar A. Graphene films and ribbons for sensing of $O_2$, and 100 ppm of CO and $NO_2$ in practical conditions. J Phys Chem C, 114, 6610 (2010). http://dx.doi.org/10.1021/jp100343d.   DOI   ScienceOn
5 Jeong HY, Lee DS, Choi HK, Lee DH, Kim JE, Lee JY, Lee WJ, Kim SO, Choi SY. Flexible room-temperature $NO_2$ gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl Phys Lett, 96, 213105 (2010). http://dx.doi.org/10.1063/1.3432446.   DOI   ScienceOn
6 Obraztsov AN, Obraztsova EA, Tyurnina AV, Zolotukhin AA. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 45, 2017 (2007). http://dx.doi.org/10.1016/j.carbon.2007.05.028.   DOI   ScienceOn
7 Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2008). http://dx.doi.org/10.1021/nl801827v.   DOI   ScienceOn
8 Obraztsov AN. Chemical vapour deposition: making graphene on a large scale. Nat Nanotechnol, 4, 212 (2009). http://dx.doi.org/10.1038/nnano.2009.67.   DOI   ScienceOn
9 Lee MS, Lee KJ. Separation of iron and nickel from a spent $FeCl_3$ etching solution by solvent extraction. Hydrometallurgy, 80, 163 (2005). http://dx.doi.org/10.1016/j.hydromet.2005.06.010.   DOI   ScienceOn
10 Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 97, 187401 (2006). http://dx.doi.org/10.1103/PhysRevLett.97.187401.   DOI   ScienceOn
11 Wang Yy, Ni Zh, Yu T, Shen ZX, Wang Hm, Wu Yh, Chen W, Shen Wee AT. Raman studies of monolayer graphene: the substrate effect. J Phys Chem C, 112, 10637 (2008). http://dx.doi.org/10.1021/jp8008404.   DOI   ScienceOn
12 Ganhua L, Leonidas EO, Junhong C. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology, 20, 445502 (2009). http://dx.doi.org/10.1088/0957-4484/20/44/445502.   DOI   ScienceOn
13 Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996.   DOI   ScienceOn
14 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.   DOI   ScienceOn
15 Zhang Y, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201 (2005). http://dx.doi.org/10.1038/nature04235.   DOI   ScienceOn
16 Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197 (2005). http://dx.doi.org/10.1038/nature04233.   DOI   ScienceOn
17 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.   DOI   ScienceOn
18 Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Lett, 8, 3137 (2008). http://dx.doi.org/10.1021/nl8013007.   DOI   ScienceOn
19 Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson ATC. Intrinsic response of graphene vapor sensors. Nano Lett, 9, 1472 (2009). http://dx.doi.org/10.1021/nl8033637.   DOI   ScienceOn
20 Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 6, 652 (2007). http://dx.doi.org/10.1038/nmat1967.   DOI   ScienceOn