• Title/Summary/Keyword: Multiferroics

Search Result 19, Processing Time 0.029 seconds

Effects of Mn Doping on Structural and Magnetic Properties of Multiferroic BiFeO3 Nanograins Made by Sol-gel Method

  • Raghavender, A.T.;Hong, Nguyen Hoa
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.19-22
    • /
    • 2011
  • [ $BiFeO_3$ ]is a multiferroic material that attracts attentions of many research groups due to its potential as being ferroelectric and ferromagnetic above room temperature. We have prepared both undoped- and Mn-doped $BiFeO_3$ by sol-gel auto-ignition method. Doping of Mn has resulted in decreasing grain size from 60 to 32 nm. X-ray diffraction data show that the samples are pure and single-phase. Infrared measurements on $BiFeO_3$ and Mn-doped $BiFeO_3$ revealed intrinsic stretching vibrations of tetrahedral sites of $Fe^{3+}$-O and of octahedral $Bi^{3+}$-O as well. On the other hand, as the Mn concentration increases, the magnetic moment of $BiFeO_3$ increases. It gives some suggestions in manipulating structural and magnetic properties of $BiFeO_3$ by doping Mn.

Enhancement of the Magnetic Flux in Metglas/PZT-Magnetoelectric Integrated 2D Geomagnetic Device

  • Huong Giang, D.T.;Duc, P.A.;Ngoc, N.T.;Hien, N.T.;Duc, N.H.
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.308-315
    • /
    • 2012
  • Experimental investigations of the magnetization, magnetostriction and magnetoelectric (ME) effects were performed on sandwich - type Metglas/PZT/Metglas laminate composites. The results have been analyzed by taking into account the demagnetization contribution. The study has pointed out that the magnetic flux concentration is strongly improved in piezomagnetic laminates with a narrower width leading to a significant enhancement of the ME effects. The piezomagnetic laminates with the optimal area dimension were integrated to form a 2-D geomagnetic device, which simultaneously can precisely detect the strength as well as inclination of the earth's magnetic field. In this case, a magnetic field resolution of better than $10^{-4}$ Oe and an angle precision of ${\pm}0.1^{\circ}$ were determined. This simple and low-cost geomagnetic-field device is promising for various applications.

Phase Evolution Behavior of Multiferroic (Bi,Nd)(Fe,Ti)$O_3$ Ceramics and Thin Films ((Bi,Nd)(Fe,Ti)$O_3$ 다강체 세라믹 및 박막의 상변화 거동)

  • Kim, Kyung-Man;Yang, Pan;Lee, Jai-Yeoul;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.231-232
    • /
    • 2008
  • The coupling between electric, magnetic, and structural order parameters results in the so-called multiferroics, which possess ferroelectricity, ferromagnetism, and/or ferroelasticity. The simultaneous ferroelectricity and ferromagnetism (magnetoelectricity) allow potential applications in information storage, spintronics, and in magnetic or electric field sensors. Perovskite compound $BiFeO_3$ (BFO) is antiferromagnetic below Neel temperature of 647K and ferroelectric with a high Curie temperature of 1043K. It exhibits weak magnetism at room temperature(RT) due to the residual moment from a canted spin structure. It is likely that non-stoichiometry and second-phase formation are the factors which cause leakage in BFO. It has been suggested that oxygen non-stoichiometry leads to valence fluctuations of Fe ions in BFO, resulting in high conductivity. To reduce the large leakage current of BFO, one attempt is fabricating donor doped BFO compounds and thin films. We report here the successful fabrication of the Nd, Ti co-doped $BiFeO_3$ ceramics and thin films by pulsed laser deposition technique.

  • PDF

Modeling of neutron diffractometry facility of Tehran Research Reactor using Vitess 3.3a and MCNPX codes

  • Gholamzadeh, Z.;Bavarnegin, E.;Rachti, M.Lamehi;Mirvakili, S.M.;Dastjerdi, M.H.Choopan;Ghods, H.;Jozvaziri, A.;Hosseini, M.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.151-158
    • /
    • 2018
  • The neutron powder diffractometer (NPD) is used to study a variety of technologically important and scientifically driven materials such as superconductors, multiferroics, catalysts, alloys, ceramics, cements, colossal magnetoresistance perovskites, magnets, thermoelectrics, zeolites, pharmaceuticals, etc. Monte Carlo-based codes are powerful tools to evaluate the neutronic behavior of the NPD. In the present study, MCNPX 2.6.0 and Vitess 3.3a codes were applied to simulate NPD facilities, which could be equipped with different optic devices such as pyrolytic graphite or neutron chopper. So, the Monte Carlo-based codes were used to simulate the NPD facility of the 5 MW Tehran Research Reactor. The simulation results were compared to the experimental data. The theoretical results showed good conformity to experimental data, which indicates acceptable performance of the Vitess 3.3a code in the neutron optic section of calculations. Another extracted result of this work shows that application of neutron chopper instead of monochromator could be efficient to keep neutron flux intensity higher than $10^6n/s/cm^2$ at sample position.

Effect of Ni dopant on the multiferroicity of BiFeO3 ceramic

  • Hwang, J.S.;Yoo, Y.J.;Kang, J.H.;Lee, K.H.;Lee, B.W.;Park, S.Y.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.139.1-139.1
    • /
    • 2016
  • Multiferroic materials are of great interest because of its potential applications in the design of devices combining magnetic, electronic and optical functionalities. Among various multiferroic materials, $BiFeO_3$(BFO) is known to be one of the intensively focused mainly due to the possibility of multiferroism at device working temperature (> $200^{\circ}C$). However, leakage current and weak polarization resulting from oxygen deficiency and crystalline defect should be resolved. Furthermore the magnetic ordering of pure BFO mainly prefers to have antiferromagnetic coupling. Up to now many attempts have been performed to improve the ferromagnetic and the ferroelectric properties of BFO by doping. In this work, we investigated the effects of Ni substitution on the multiferroism of bulk BFO. Four BFO samples (a pure BFO and three Ni-doped BFO's; $BiFe_{0.99}Ni_{0.01}O_3$, $BiFe_{0.98}Ni_{0.02}O_3$ and $BiFe_{0.97}Ni_{0.03}O_3$) were synthesized by the standard solid-state reaction and rapid sintering technique. The XRD results reveal that Ni atoms are substituted into Fe-sites and give rise to phase transition of cubic to rhombohedal. By using vibrating sample magnetometer and standard ferroelectric tester, the multiferroic properties at room temperature were characterized. We found that the magnetic moment of Ni-doped BFO turned out to be maximized for 3% of Ni dopant.

  • PDF

Crystal Structure and Microstructure Variation of Nonstoichiometric Bi1±xFeO3±δ and Ti-doped BiFeO3 Ceramics under Various Sintering Conditions (비화학양론적 Bi1±xFeO3±δ와 Ti가 첨가된 BiFeO3의 소결조건에 따른 결정구조와 미세구조 변화)

  • Bae, Jihee;Kim, Jun Chan;Kim, Myong-Ho;Lee, Soonil
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.61-67
    • /
    • 2020
  • BiFeO3 with perovskite structure is a well-known material that has both ferroelectric and antiferromagnetic properties called multiferroics. However, leaky electrical properties and difficulty of controlling stoichiometry due to Bi volatility and difficulty of obtaining high relative density due to high dependency on the ceramic process are issues for BiFeO3 applications. In this work we investigated the sintering behavior of samples with different stoichiometries and sintering conditions. To understand the optimum sintering conditions, nonstoichiometric Bi1±xFeO3±δ ceramics and Ti-doped Bi1.03Fe1-4x/3TixO3 ceramics were synthesized by a conventional solid-state route. Dense single phase BiFeO3 ceramics were successfully fabricated using a two-step sintering and quenching process. The effects of Bi volatility on microstructure were determined by Bi-excess and Ti doping. Bi-excess increased grain size, and Ti doping increased sintering temperature and decreased grain size. It should be noted that Ti-doping suppressed Bi volatility and stabilized the BiFeO3 phase.

First-principles studies on mechanical, electronic, magnetic and optical properties of new multiferroic members BiLaFe2O6 and Bi2FeMnO6: Originated from BiFeO3

  • Tuersun, Yisimayili;Rouzhahong, Yilimiranmu;Maimaiti, Maihemuti;Salamu, Abidiguli;Xiaerding, Fuerkaiti;Mamat, Mamatrishat;Jing, Qun
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1473-1479
    • /
    • 2018
  • Recently multiferroic materials have attract great interest for the applications on memorial, spintronic and magneto-electric sensor devices for their spontaneous magneto-electric coupling properties. Research and development of the various kinds of multiferroics are indispensable factor for a new generation multifunctional materials. In this research, mechanical, electronic, magnetic and nonlinear optical properties of La modified $BiLaFe_2O_6$ (BLFO) and Mn modified $Bi_2FeMnO_6$ (BFMO) were studied as new members of multiferroic $BiFeO_3$ (BFO) series by first-principles calculations, and compared with the pure BFO to discover the optimized properties. Our results show that BLFO and BFMO have good mechanical stability as revealed by elastic constants that satisfy the stability criteria. All these compounds exhibit anisotropic and ductile nature. The enhanced properties by La and Mn substitution, such as increased hardness, improved magnetism, decreased band gap and comparable second harmonic generation responses reveal that the new multiferroic members of BLFO and BFMO would get wider application than their BFO counterpart. Our study is expected to providing an appropriate mechanical reference data as guidance for engineering of high efficiency multifunctional devices with the BFO series.

Investigation on Ferroelectric and Magnetic Properties of Pb(Fe1/2Nb1/2)O3 Fe-Site Engineered with Antisymmetric Exchange Interaction (반대칭 교환 상호작용을 갖도록 Fe-Site가 제어된 PbFe1/2Nb1/2O3의 강유전/자기적 특성 연구)

  • Park, Ji-Hun;Lee, Ju-Hyeon;Cho, Jae-Hyeon;Jang, Jong Moon;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.297-302
    • /
    • 2022
  • We investigated the origin of magnetic behaviors induced by an asymmetric spin exchange interaction in Fe-site engineered lead iron niobate [Pb(Fe1/2Nb1/2)O3, PFN], which exhibits a room-temperature multiferroicity. The magnitude of spin exchange interaction was regulated by the introduced transition metals with a distinct Bohr magneton, i.e., Cr, Co, and Ni. All compositions were found to have a single-phase perovskite structure keeping their ferroelectric order except for Cr introduction. We discovered that the incorporation of each transition metal imposes a distinct magnetic behavior on the lead iron niobate system; antiferro-, hard ferro-, and soft ferromagnetism for Cr, Co, and Ni, respectively. This indicates that orbital occupancy and interatomic distance play key roles in the determination of magnetic behavior rather than the magnitude of the individual Bohr magneton. Further investigations are planned, such as X-ray absorption spectroscopy, to clarify the origin of magnetic properties in this system.