Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.2.61

Crystal Structure and Microstructure Variation of Nonstoichiometric Bi1±xFeO3±δ and Ti-doped BiFeO3 Ceramics under Various Sintering Conditions  

Bae, Jihee (School of Materials Science and Engineering, Changwon National University)
Kim, Jun Chan (School of Materials Science and Engineering, Changwon National University)
Kim, Myong-Ho (School of Materials Science and Engineering, Changwon National University)
Lee, Soonil (School of Materials Science and Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.30, no.2, 2020 , pp. 61-67 More about this Journal
Abstract
BiFeO3 with perovskite structure is a well-known material that has both ferroelectric and antiferromagnetic properties called multiferroics. However, leaky electrical properties and difficulty of controlling stoichiometry due to Bi volatility and difficulty of obtaining high relative density due to high dependency on the ceramic process are issues for BiFeO3 applications. In this work we investigated the sintering behavior of samples with different stoichiometries and sintering conditions. To understand the optimum sintering conditions, nonstoichiometric Bi1±xFeO3±δ ceramics and Ti-doped Bi1.03Fe1-4x/3TixO3 ceramics were synthesized by a conventional solid-state route. Dense single phase BiFeO3 ceramics were successfully fabricated using a two-step sintering and quenching process. The effects of Bi volatility on microstructure were determined by Bi-excess and Ti doping. Bi-excess increased grain size, and Ti doping increased sintering temperature and decreased grain size. It should be noted that Ti-doping suppressed Bi volatility and stabilized the BiFeO3 phase.
Keywords
bismuth ferrite; multiferroic; ferroelectric; defect; sintering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin and K. M. Rabe, Phys. Rev. B, 71, 014113 (2005).   DOI
2 G. Catalan and J. F. Scott, Adv. Mater., 21, 2463 (2009).   DOI
3 L. W. Martin, S. P. Crane, Y. H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C. H. Yang, N. Balke and R. Ramesh, J. Phys.: Condens. Matter., 20, 434220 (2008).   DOI
4 Y. Lee, Z. Q. Liu, J. T. Heron, J. D. Clarkson, J. Hong, C. Ko, M. D. Biegalski, U. Aschauer, S. L. Hsu, M. E. Nowakowski and J. Wu, Nat. Commun., 6, 5959 (2015).   DOI
5 J. T. Heron, J. L. Bosse, Q. He, Y. Gao, M. Yrassin, L. Ye, J. D. Clarkson, C. Wang, J. Liu, S. Salahuddin and D. C. Ralph, Nature, 516, 370 (2014).   DOI
6 C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland and G. Srinivasan, J. Appl. Phys., 103, 1 (2008).   DOI
7 M. Fiebig, T. Lottermoser, D. Frohlich, A. V. Goltsev and R. V. Pisarev, Nature, 419, 818 (2002).   DOI
8 S. M. Selbach, T. Tybell, M. A. Einarsrud and T. Grande, Adv. Mater., 20, 3692 (2008).   DOI
9 S. M. Selbach, T. Tybell, M. A. Einarsrud and T. Grande, J. Solid State Chem., 183, 1205 (2010).   DOI
10 G. Catalan, and J. F. Scott, Adv. Mater., 21, 2463 (2009).   DOI
11 T. Zheng and J. Wu, J. Mater. Chem. C, 3, 11326 (2015).   DOI
12 Y. Sun, W. Cai, R. Gao, X. Cao, F. Wang, T. Lei, X. Deng, G. Chen, H. He and C. Fu, J. Mater. Sci.: Mater. Electron., 28, 12039 (2017).   DOI
13 J. W. Woo, S. B. Baek, T. K. Song, M. H. Lee, J. U. Rahman, W. J. Kim, Y. S. Sung and S. Lee, J. Korean Ceram. Soc., 54, 323 (2017).   DOI
14 S. M. Selbach, M. A. Einarsrud and T. Grande, Chem. Mater., 21, 169 (2008).   DOI
15 D. Wang, G. Wang, S. Murakami, Z. Fan, A. Feteira, D. Zhou, S. Sun, Q. Zhao and I. M. Reaney, J. Adv. Dielectr., 8, 1830004 (2018).   DOI
16 R. D. Shannon, Acta Cryst., A32, 751 (1976).   DOI
17 R. Das and K. Mandal, J. Magn. Magn. Mater., 324, 1913 (2012).   DOI
18 Y.-I. Jung, S.-Y. Choi, S.-J. L. Kang, Acta Mater., 54, 2849 (2006).   DOI