• Title/Summary/Keyword: Multi-walled carbon nanotube

Search Result 279, Processing Time 0.05 seconds

Evaluation on the thermoelectric energy harvesting performance of multi-walled carbon nanotube-embedded alkali activated slag composites (다중벽 탄소나노튜브 혼입 알칼리 활성 슬래그 복합재료의 열전 에너지 수확 성능평가)

  • Park, Hyeong-Min;Yang, Beomjo
    • Journal of Urban Science
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The thermoelectric characteristics of alkali activated slag composites containing multi-walled carbon nanotubes (MWCNT) was investigated in the present study. Three different MWCNT contents and exposed temperatures were considered, and their thermoelectric-related properties and internal structures were analyzed. It was found that the alkali activated slag composite with MWCNT 2.0 wt.% and the exposed temperature of 150℃ were the optimal condition to obtain the highest Seebeck coefficient and power factor. Based on the feasibility study, the extended size thermoelectric module with 130 elements was fabricated, and tested the electricity production capacity. Consequently, the present thermoelectric module produced 30.83 ㎼ of electricity at ∆T=178.4℃.

Characteristics of Carbon Nanotube Oscillator for Embedded System (임베디드 시스템을 위한 탄소나노튜브 오실레이터의 특성 해석)

  • Lee, Jun-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1150-1153
    • /
    • 2008
  • The coupled oscillation of multi-walled carbon-nanotube (MWCNT) oscillators consisting of (5n, 5n) CNTs was investigated by molecular dynamics simulations. The results show that the inter-wall coupling leads to frequency splits. And there are consistently three primary frequency peaks for the quadric-walled, penta-walled and hexa-walled CNT oscillators. It is independent of the wall parameters, suggesting applications as triple-frequency generators. Furthermore, at least one of the primary frequencies of a MWCNT oscillator is lower than that of its double-walled counterpart.

Property Evaluation of HVOF Sprayed Multi-walled Carbon Nanotube Aluminum Composite Coatings (고속 화염 용사를 통하여 형성된 다중벽 탄소 나노튜브 알루미늄 복합소재 코팅의 특성 평가)

  • Kang, Ki-Cheol;Park, Hyung-Kwon;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Multi-walled carbon nanotube (MWCNT) aluminum composite powders were deposited to form coatings using a high velocity oxygen fuel (HVOF) spraying process. High thermal energy and contact with atmospheric oxygen were supplied as the MWCNT aluminum composite particles were exposed to a gas flow field at high temperature (${\sim}3.0{\times}10^3$ K) during HVOF spraying. As a result, the particles underwent full or partial melting and rapid solidification due to the high thermal energy, and the exposure to oxygen induced the interfacial reaction of MWCNTs within the particle. The electrical and mechanical properties of MWCNT aluminum composite coatings were evaluated based on microstructure analysis. Electrical resistivity, elastic modulus, and micro-hardness, of the MWCNT aluminum composite coatings were higher than those of pure aluminum coating. The contribution of MWCNTs to the aluminum matrix can be attributed to their high electrical conductivity, dispersion hardening and anchoring effects. The relationship among the properties and the interaction of the MWCNTs with the aluminum matrix is discussed.

A Study on Permittivity of Multi-walled Carbon nanotube/Epoxy Composites (다중벽 탄소나노튜브/에폭시 복합재료의 유전율에 관한 연구)

  • 이상의;박기연;김천곤;한재흥
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.38-44
    • /
    • 2004
  • The electromagnetic interference (EMI) shielding is very essential for commercial and military purposes. We fabricated multi-walled carbon nanotube (MWNT)/epoxy composites and studied the electromagnetic characteristics of the composites before we study the characteristics of MWNT-added glass fiber-reinforced composites. After setting up the fabrication process, we measured the permittivity of MWNT/epoxy composites with process variables and MWNT concentrations in X-band (8.2GHz~12.4GHz). We also observed re-aggregation phenomenon of MWNTs and investigated its effect on the permittivity. The permittivity of the composites was influenced by the degree of dispersion of MWNTs and increased almost linearly as MWNT concentration increases.

Properties of impact modifier reinforced PPS/MWCNT Nanocomposite (충격보강제가 보강된 PPS (polyphenylene sulfide)/MWCNT (multi-walled carbon nanotube) 나노복합체의 물성연구)

  • Park, Ji Soo;Kim, Seung Beom;Nam, Byeong Uk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • Polymer composites which have electrical properties have been studied in various industries. The Multi-walled carbon nanotube (MWCNT) are thought to be reinforcements for polymers because of their high aspect ratio and specially mechanical, thermal and electrical properties. We introduced MWCNT and impact modifier in order to improve thermal and mechanical properties of Polyphenylene sulfide (PPS) and give electric characteristic to PPS. The thermal properties were investigated by Differential scanning calorimeter (DSC) and Thermogravimetric analysis (TGA). The morphology, mechanical properties and electrical characteristic were performed by Field emission scanning electron microscopy (FE-SEM), Izod impact tester and surface resistance meter. As a result, we could find that the PPS/MWCNT composites have high conductivity and good mechanical properties than neat PPS resin.

Effect of Nanotube Length on Rheological Characteristics of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites Prepared by Latex Technology (라텍스 기법으로 제조한 폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 나노튜브 길이가 유변학적 특성에 미치는 영향)

  • Woo, Dong-Kyun;Noh, Won-Jin;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.534-539
    • /
    • 2010
  • Polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared via latex technology and the effect of nanotube length on rheological properties were investigated. Monodisperse PS particle was synthesized by the emulsifier-free emulsion polymerization and two types of MWCNTs were used after surface modification to improve dispersion state and to remove impurities. Final nanocomposites were prepared by the freeze-drying process after dispersing the PS particles and the surface-modified MWCNTs in a ultrasonic bath. The effects of MWCNT content and nanotube length on rheological properties were evaluated by imposing the small-amplitude oscillatory shear flow. The PS/MWCNT nanocomposites showed that rheological properties were enhanced as the amount and length of MWCNT increased. It is speculated that the rheological characteristics of nanocomposites change from liquid-like to solid-like as the MWCNT amount increases, and the critical concentration to achieve network structure decreases as the nanotube length increases.

Fabrication of a Resonator using suspended Multi-wall Carbon Nanotubes (다중벽 탄소나노튜브를 이용한 공진기 제작)

  • Lee J.H.;Seo H.W.;Song J.W.;Han C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.465-466
    • /
    • 2006
  • A single-wall carbon nanotube (SWCNT) has been studied as a material of Nano-Eletro-Mechanical-System (NEMS) device together with various nanowires. In order for oscillation of a multi-wall carbon nanotube (MWCNT) or a single-walled carbon nanotube (SWCNT) on plane surface, it needs suspension of a CNT across trench electrodes. So we propose fabrication method of a MWCNT resonator using dielectrophoresis and show successful results of suspeneded MWNT. Thin electrodes with large gaps could not suspend small diameter MWNT but thicker electrodes could. Thin MWNT could be suspended only when the electrode gap was reduced.

  • PDF

Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes

  • Nikkar, Abed;Rouhi, Saeed;Ansari, Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.329-337
    • /
    • 2017
  • This study concerns the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes using the finite element method. The beam elements are used to model the carbon-carbon and silicon-carbon bonds. Besides, spring elements are employed to simulate the van der Waals interactions between walls. The effects of nanotube arrangement, number of walls, geometrical parameters and boundary conditions on the frequencies of nested silicon-carbide and carbon nanotubes are investigated. It is shown that the double-walled nanotubes have larger frequencies than triple-walled nanotubes. Besides, replacing silicon carbide layers with carbon layers leads to increasing the frequencies of nested silicon-carbide and carbon nanotubes. Comparing the first ten mode shapes of nested nanotubes, it is observed that the mode shapes of armchair and zigzag nanotubes are almost the same.