Browse > Article

Effect of Nanotube Length on Rheological Characteristics of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites Prepared by Latex Technology  

Woo, Dong-Kyun (Department of Polymer Engineering, The University of Suwon)
Noh, Won-Jin (Department of Polymer Engineering, The University of Suwon)
Lee, Seong-Jae (Department of Polymer Engineering, The University of Suwon)
Publication Information
Polymer(Korea) / v.34, no.6, 2010 , pp. 534-539 More about this Journal
Abstract
Polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared via latex technology and the effect of nanotube length on rheological properties were investigated. Monodisperse PS particle was synthesized by the emulsifier-free emulsion polymerization and two types of MWCNTs were used after surface modification to improve dispersion state and to remove impurities. Final nanocomposites were prepared by the freeze-drying process after dispersing the PS particles and the surface-modified MWCNTs in a ultrasonic bath. The effects of MWCNT content and nanotube length on rheological properties were evaluated by imposing the small-amplitude oscillatory shear flow. The PS/MWCNT nanocomposites showed that rheological properties were enhanced as the amount and length of MWCNT increased. It is speculated that the rheological characteristics of nanocomposites change from liquid-like to solid-like as the MWCNT amount increases, and the critical concentration to achieve network structure decreases as the nanotube length increases.
Keywords
multi-walled carbon nanotube; nanocomposite; monodisperse polystyrene particle; latex technology; rheological properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. L. Ou, J. K. Yang, and H. Chen, Eur. Polym. J., 37, 789 (2001).   DOI   ScienceOn
2 G. Yamamoto, M. Omori, T. Hashida, and H. Kimura, Nano-technology, 19, 315708 (2008).   DOI   ScienceOn
3 J. Lee, C. K. Hong, S. Choe, and S. E. Shim, J. Colloid Interface Sci., 310, 112 (2007).   DOI   ScienceOn
4 B. H. Cipiriano, T. Kashiwagi, S. R. Raghavan, Y. Yang, E. A. Grulke, K. Yamamoto, J. R. Shields, and J. F. Douglas, Polymer, 48, 6086 (2007).   DOI   ScienceOn
5 M. A. L. Manchado, L. Valentini, J. Biagiotti, and J. M. Kenny, Carbon, 43, 1499 (2005).   DOI   ScienceOn
6 P. Potschke, A. R. Bhattacharyya, and A. Janke, Carbon, 42, 965 (2004).   DOI   ScienceOn
7 H. J. Barraza, F. Pompeo, E. A. O'Rear, and D. E. Resasco, Nano Lett., 2, 797 (2002).   DOI   ScienceOn
8 D. K. Woo, B. C. Kim, and S. J. Lee, Korea-Australia Rheol. J., 21, 185 (2009).   과학기술학회마을
9 J. Zhao, A. B. Morgan, and J. D. Harris, Polymer, 46, 8641 (2005).   DOI   ScienceOn
10 R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, and K. I. Winey, Chem. Phys. Lett., 330, 219 (2000).   DOI   ScienceOn
11 C. A. Cooper, D. Ravich, D. Lips, J. Mayer, and H. D. Wagner, Compos. Sci. Technol., 62, 1105 (2002).   DOI   ScienceOn
12 S. Kumar, T. D. Dang, F. E. Arnold, A. R. Bhattacharyya, B. G. Min, X. Zhang, R. A. Vaia, C. Park, W. W. Adams, R. H. Hauge, R. E. Smally, S. Ramesh, and P. A. Willis, Macromolecules, 35, 9039 (2002).   DOI   ScienceOn
13 O. Regev, P. N. B. ElKati, J. Loos, and C. E. Koning, Adv. Mater., 16, 248 (2004).   DOI   ScienceOn
14 T. M. Wu and E. C. Chen, Comp. Sci. Tech., 68, 2254 (2008).   DOI   ScienceOn
15 J. Sun and L. Gao, Carbon, 41, 1063 (2003).   DOI   ScienceOn
16 Y. H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, and D. Wu, Carbon, 41, 1057 (2003).   DOI   ScienceOn
17 J. S. Moon, J. H. Park, T. Y. Lee, Y. W. Kim, J. B. Yoo, C. Y. Park, J. M. Kim, and K. W. Jin, Diamond Relat. Mater., 14, 1882 (2005).   DOI   ScienceOn
18 J. Yu, K. Lu, E. Sourty, N. Grossiord, C. E. Koning, and J. Loos, Carbon, 45, 2897 (2007).   DOI   ScienceOn
19 S. Y. Lee and S. J. Park, Bull. Korean Chem. Soc., 31, 1596 (2010).   DOI   ScienceOn
20 Y. T. Sung, M. S. Han, K. H. Song, J. W. Jung, H. S. Lee, C. K. Kum, J. Joo, and W. N. Kim, Polymer, 47, 4434 (2006).   DOI   ScienceOn
21 H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nature, 384, 147 (1996).   DOI   ScienceOn
22 F. Balavoine, P. Schultz, C. Richard, V. Mallouh, T. W. Ebbesen, and C. Mioskowski, Angew. Chem. Int. Ed., 38, 1912 (1999).   DOI
23 D. Pantarotto, C. D. Partidos, J. Hoebeke, F. Brown, E. Kramer, J. P. Briand, S. Muller, M. Prato, and A. Bianco, Chem. Biol., 10, 961 (2003).   DOI   ScienceOn
24 M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature, 381, 678 (1996).   DOI   ScienceOn
25 P. Potschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002).   DOI   ScienceOn
26 M. Jung and J. W. Cho, J. Korean Fiber Sci., 41, 73 (2004).
27 S. Iijima, Nature, 354, 56 (1991).   DOI