DOI QR코드

DOI QR Code

Property Evaluation of HVOF Sprayed Multi-walled Carbon Nanotube Aluminum Composite Coatings

고속 화염 용사를 통하여 형성된 다중벽 탄소 나노튜브 알루미늄 복합소재 코팅의 특성 평가

  • Kang, Ki-Cheol (Kinetic Spray Coating Laboratory, Division of Materials Science & Engineering, College of Engineering, Hanyang University) ;
  • Park, Hyung-Kwon (Kinetic Spray Coating Laboratory, Division of Materials Science & Engineering, College of Engineering, Hanyang University) ;
  • Lee, Chang-Hee (Kinetic Spray Coating Laboratory, Division of Materials Science & Engineering, College of Engineering, Hanyang University)
  • 강기철 (한양대학교 신소재공학부 저온 분사 코팅 연구실) ;
  • 박형권 (한양대학교 신소재공학부 저온 분사 코팅 연구실) ;
  • 이창희 (한양대학교 신소재공학부 저온 분사 코팅 연구실)
  • Received : 2011.12.16
  • Accepted : 2012.02.28
  • Published : 2012.02.29

Abstract

Multi-walled carbon nanotube (MWCNT) aluminum composite powders were deposited to form coatings using a high velocity oxygen fuel (HVOF) spraying process. High thermal energy and contact with atmospheric oxygen were supplied as the MWCNT aluminum composite particles were exposed to a gas flow field at high temperature (${\sim}3.0{\times}10^3$ K) during HVOF spraying. As a result, the particles underwent full or partial melting and rapid solidification due to the high thermal energy, and the exposure to oxygen induced the interfacial reaction of MWCNTs within the particle. The electrical and mechanical properties of MWCNT aluminum composite coatings were evaluated based on microstructure analysis. Electrical resistivity, elastic modulus, and micro-hardness, of the MWCNT aluminum composite coatings were higher than those of pure aluminum coating. The contribution of MWCNTs to the aluminum matrix can be attributed to their high electrical conductivity, dispersion hardening and anchoring effects. The relationship among the properties and the interaction of the MWCNTs with the aluminum matrix is discussed.

Keywords

References

  1. A. Pantano, D. M. Parks, M. C. Boyce, J. Mech. Phys. Solids, 52 (2004) 789. https://doi.org/10.1016/j.jmps.2003.08.004
  2. C. Goze, V. Vaccarini, L. Henrard, P. Bernier, E. Hernandz, A. Rubio, Synthesis Met., 103 (1999) 2500. https://doi.org/10.1016/S0379-6779(98)01071-6
  3. J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Appl. Phys. A, 36 (1999) 255.
  4. P. Calvert, Nature 399 (1999) 210. https://doi.org/10.1038/20326
  5. J. Fraysse, A. I. Minett, O. Jaschinski, G. C. Duesberg, S. Roth, Carbon, 40 (2002) 1735. https://doi.org/10.1016/S0008-6223(02)00041-6
  6. E. S. Snow, P. M. Campbell, J. P. Novak, Appl. Phys. Lett., 80 (2002) 2002-4. https://doi.org/10.1063/1.1461073
  7. J. N. Coleman, U. Khan, Y. K. Gun'ko, Adv. Mater., 18 (2006) 689. https://doi.org/10.1002/adma.200501851
  8. B. D. Hahn, J. M. Lee, D. S. Park, J. J. Choi, J. Ryu, W. H. Yoon, Acta Biomater, 5 (2009) 3205. https://doi.org/10.1016/j.actbio.2009.05.005
  9. Y. Yang, H. Liao, C. Coddet, J. Therm. Spray Technol., 22 (2002) 36.
  10. H. Choi, S. Lee, B. Kim, H. Jo, C. Lee, J. Mater. Sci., 40 (2005) 6121. https://doi.org/10.1007/s10853-005-3169-z
  11. Y. H. Lee, J. Y. Kim, J. S. Park, S. H. Nahm, D. Kwon, J. Mater. Proc. Technol., 187 (2007) 794. https://doi.org/10.1016/j.jmatprotec.2006.11.185
  12. J. H. Ahn, D. Kwon, J. Mater. Res., 16 (2001) 3170. https://doi.org/10.1557/JMR.2001.0437
  13. S. P. Walch, Chem. Phys. Lett., 374 (2003) 501. https://doi.org/10.1016/S0009-2614(03)00736-X
  14. L. Qingwen, Y. Hao, Y. Yinchun, Z. Jin, L. Zhongfan, J. Phys. Chem. B, 106 (2002) 11085. https://doi.org/10.1021/jp026512c
  15. S. R. Bakshi, V. Singh, D. G. McCartney, S. Seal, A. Agarwal, Scripta Mater., 59 (2008) 499. https://doi.org/10.1016/j.scriptamat.2008.04.035
  16. P. S. Phani, V. Vishnukanthan, G. Sundararajan, Acta Mater., 55 (2007) 4741. https://doi.org/10.1016/j.actamat.2007.04.044
  17. R. G. Villoria, A. Miravete, Acta Mater., 55 (2007) 3025. https://doi.org/10.1016/j.actamat.2007.01.007
  18. R. E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles (3rd edition) 159.
  19. G. E. Dieter, Mechanical Metallurgy (3rd edition), McGraw-Hill (1988) 212.
  20. C. F. Deng, D. Z. Wang, X. X. Zhang, A. B. Li, Mater. Sci. Eng. A 444 (2007) 138. https://doi.org/10.1016/j.msea.2006.08.057

Cited by

  1. Hardness and Microstructure of Mixed Al-CNF Powder Extrusion vol.62, pp.2, 2017, https://doi.org/10.1515/amm-2017-0190