DOI QR코드

DOI QR Code

Evaluation on the thermoelectric energy harvesting performance of multi-walled carbon nanotube-embedded alkali activated slag composites

다중벽 탄소나노튜브 혼입 알칼리 활성 슬래그 복합재료의 열전 에너지 수확 성능평가

  • 박형민 (충북대학교 공과대학 토목공학과) ;
  • 양범주 (충북대학교 공과대학 토목공학과)
  • Received : 2020.04.28
  • Accepted : 2020.06.30
  • Published : 2020.06.30

Abstract

The thermoelectric characteristics of alkali activated slag composites containing multi-walled carbon nanotubes (MWCNT) was investigated in the present study. Three different MWCNT contents and exposed temperatures were considered, and their thermoelectric-related properties and internal structures were analyzed. It was found that the alkali activated slag composite with MWCNT 2.0 wt.% and the exposed temperature of 150℃ were the optimal condition to obtain the highest Seebeck coefficient and power factor. Based on the feasibility study, the extended size thermoelectric module with 130 elements was fabricated, and tested the electricity production capacity. Consequently, the present thermoelectric module produced 30.83 ㎼ of electricity at ∆T=178.4℃.

Keywords

References

  1. Cai, J., Tan, J., &Li, X. (2020). Thermoelectric behaviors of fly ash and metakaolin based geopolymer. Construction and Building Materials, 237, 117757. https://doi.org/10.1016/j.conbuildmat.2019.117757
  2. Comanducci, G., Ubertini, F., & Materazzi, A. L. (2015). Structural health monitoring of suspension bridges with features affected by changing wind speed. Journal of Wind Engineering and Industrial Aerodynamics, 141, 12-26. https://doi.org/10.1016/j.jweia.2015.02.007
  3. Farrimond S. (2010). Driving on Ice: Alternatives to Grit Salt (https://realdoctorstu.com/2010/12/13/driving-on-ice-alternatives-to-grit-salt/)
  4. Ghosh, S., Harish, S., Rocky, K. A., Ohtaki, M., &Saha, B. B. (2019). Graphene enhanced thermoelectric properties of cement based composites for building energy harvesting. Energy and Buildings, 202, 109419. https://doi.org/10.1016/j.enbuild.2019.109419
  5. Kim, G. M., Nam, I. W., Yoon, H. N., & Lee, H. K. (2018). Effect of superplasticizer type and siliceous materials on the dispersion of carbon nanotube in cementitious composites. Composite Structures, 185, 264-272. https://doi.org/10.1016/j.compstruct.2017.11.011
  6. Kim, G. M., Park, S. M., Ryu, G. U., & Lee, H. K. (2017a). Electrical characteristics of hierarchical conductive pathways in cementitious composites incorporating CNT and carbon fiber. Cement and Concrete Composites, 82, 165-175. https://doi.org/10.1016/j.cemconcomp.2017.06.004
  7. Kim, G. M., Yang, B. J., Cho, K. J., Kim, E. M., & Lee, H. K. (2017b). Influences of CNT dispersion and pore characteristics on the electrical performance of cementitious composites. Composite Structures, 164, 32-42. https://doi.org/10.1016/j.compstruct.2016.12.049
  8. Kim, G. M., Yang, B. J., Yoon, H. N., & Lee, H. K. (2018). Synergistic effects of carbon nanotubes and carbon fibers on heat generation and electrical characteristics of cementitious composites. Carbon, 134, 283-292. https://doi.org/10.1016/j.carbon.2018.03.070
  9. Kim, H. K., Nam, I. W., & Lee, H. K. (2014a). Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Composite Structures, 107, 60-69. https://doi.org/10.1016/j.compstruct.2013.07.042
  10. Kim, H. K., Park, I. S., & Lee, H. K. (2014b). Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water-binder ratio. Composite Structures, 116, 713-719. https://doi.org/10.1016/j.compstruct.2014.06.007
  11. Lee, N. K., & Lee, H. K. (2013). Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials, 47, 1201-1209. https://doi.org/10.1016/j.conbuildmat.2013.05.107
  12. Lee, N. K., Jang, J. G., & Lee, H. K. (2014). Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cement and Concrete Composites, 53, 239-248. https://doi.org/10.1016/j.cemconcomp.2014.07.007
  13. Lee, N. K., Kim, H. K., Park, I. S., & Lee, H. K. (2013). Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by-products. Construction and Building Materials, 49, 738-746. https://doi.org/10.1016/j.conbuildmat.2013.09.002
  14. Manmadhan A. (2013). Piezoelectric road harvests traffic energy to generate electricity (https://techaneesh.blogspot.com/2013/05/piezoelectric-road-harvests-traffic.html)
  15. Mehta, K. P. (2001). Reducing the environmental impact of concrete. Concrete International, 23(10), 61-66.
  16. Nam, I. W., Kim, H. K., & Lee, H. K. (2012). Influence of silica fume additions on electromagnetic interference shielding effectiveness of multi-walled carbon nanotube/cement composites. Construction and Building Materials, 30, 480-487. https://doi.org/10.1016/j.conbuildmat.2011.11.025
  17. Nam, I. W., Lee, H. K., & Jang, J. H. (2011). Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites. Composites Part A: Applied Science and Manufacturing, 42(9), 1110-1118. https://doi.org/10.1016/j.compositesa.2011.04.016
  18. Park, H. M., Kim, G. M., Lee, S. Y., Jeon, H., Kim, S. Y., Kim, M., ... & Yang, B. J. (2018). Electrical resistivity reduction with pitch-based carbon fiber into multi-walled carbon nanotube (MWCNT)-embedded cement composites. Construction and Building Materials, 165, 484-493. https://doi.org/10.1016/j.conbuildmat.2017.12.205
  19. Part, H. M., PARK, S. M., Shon, I. J., Kim, G. M., Hwang, S. B., Lee, M. W., & Yang B. J. (2020) Thermoelectric characteristic of MWCNT embedded Portland cement and alkali-activated cement composites, submitted
  20. Wesselius B. (2014). Preventing RFI (http://rboxtesting.com/preventing-rfi/)