Browse > Article
http://dx.doi.org/10.5695/JKISE.2012.45.1.001

Property Evaluation of HVOF Sprayed Multi-walled Carbon Nanotube Aluminum Composite Coatings  

Kang, Ki-Cheol (Kinetic Spray Coating Laboratory, Division of Materials Science & Engineering, College of Engineering, Hanyang University)
Park, Hyung-Kwon (Kinetic Spray Coating Laboratory, Division of Materials Science & Engineering, College of Engineering, Hanyang University)
Lee, Chang-Hee (Kinetic Spray Coating Laboratory, Division of Materials Science & Engineering, College of Engineering, Hanyang University)
Publication Information
Journal of the Korean institute of surface engineering / v.45, no.1, 2012 , pp. 1-7 More about this Journal
Abstract
Multi-walled carbon nanotube (MWCNT) aluminum composite powders were deposited to form coatings using a high velocity oxygen fuel (HVOF) spraying process. High thermal energy and contact with atmospheric oxygen were supplied as the MWCNT aluminum composite particles were exposed to a gas flow field at high temperature (${\sim}3.0{\times}10^3$ K) during HVOF spraying. As a result, the particles underwent full or partial melting and rapid solidification due to the high thermal energy, and the exposure to oxygen induced the interfacial reaction of MWCNTs within the particle. The electrical and mechanical properties of MWCNT aluminum composite coatings were evaluated based on microstructure analysis. Electrical resistivity, elastic modulus, and micro-hardness, of the MWCNT aluminum composite coatings were higher than those of pure aluminum coating. The contribution of MWCNTs to the aluminum matrix can be attributed to their high electrical conductivity, dispersion hardening and anchoring effects. The relationship among the properties and the interaction of the MWCNTs with the aluminum matrix is discussed.
Keywords
Multi-walled carbon nanotube aluminum composite; HVOF spraying; Electrical and mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Choi, S. Lee, B. Kim, H. Jo, C. Lee, J. Mater. Sci., 40 (2005) 6121.   DOI   ScienceOn
2 Y. H. Lee, J. Y. Kim, J. S. Park, S. H. Nahm, D. Kwon, J. Mater. Proc. Technol., 187 (2007) 794.   DOI
3 J. H. Ahn, D. Kwon, J. Mater. Res., 16 (2001) 3170.   DOI   ScienceOn
4 S. P. Walch, Chem. Phys. Lett., 374 (2003) 501.   DOI
5 L. Qingwen, Y. Hao, Y. Yinchun, Z. Jin, L. Zhongfan, J. Phys. Chem. B, 106 (2002) 11085.   DOI   ScienceOn
6 S. R. Bakshi, V. Singh, D. G. McCartney, S. Seal, A. Agarwal, Scripta Mater., 59 (2008) 499.   DOI   ScienceOn
7 P. S. Phani, V. Vishnukanthan, G. Sundararajan, Acta Mater., 55 (2007) 4741.   DOI   ScienceOn
8 R. G. Villoria, A. Miravete, Acta Mater., 55 (2007) 3025.   DOI   ScienceOn
9 R. E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles (3rd edition) 159.
10 G. E. Dieter, Mechanical Metallurgy (3rd edition), McGraw-Hill (1988) 212.
11 C. F. Deng, D. Z. Wang, X. X. Zhang, A. B. Li, Mater. Sci. Eng. A 444 (2007) 138.   DOI   ScienceOn
12 P. Calvert, Nature 399 (1999) 210.   DOI   ScienceOn
13 A. Pantano, D. M. Parks, M. C. Boyce, J. Mech. Phys. Solids, 52 (2004) 789.   DOI   ScienceOn
14 C. Goze, V. Vaccarini, L. Henrard, P. Bernier, E. Hernandz, A. Rubio, Synthesis Met., 103 (1999) 2500.   DOI   ScienceOn
15 J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Appl. Phys. A, 36 (1999) 255.
16 J. Fraysse, A. I. Minett, O. Jaschinski, G. C. Duesberg, S. Roth, Carbon, 40 (2002) 1735.   DOI   ScienceOn
17 E. S. Snow, P. M. Campbell, J. P. Novak, Appl. Phys. Lett., 80 (2002) 2002-4.   DOI   ScienceOn
18 J. N. Coleman, U. Khan, Y. K. Gun'ko, Adv. Mater., 18 (2006) 689.   DOI   ScienceOn
19 B. D. Hahn, J. M. Lee, D. S. Park, J. J. Choi, J. Ryu, W. H. Yoon, Acta Biomater, 5 (2009) 3205.   DOI   ScienceOn
20 Y. Yang, H. Liao, C. Coddet, J. Therm. Spray Technol., 22 (2002) 36.