Browse > Article
http://dx.doi.org/10.12989/sem.2017.64.3.329

Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes  

Nikkar, Abed (Department of Mechanical Engineering, University of Guilan)
Rouhi, Saeed (Young Researchers and Elite Club, Langarud Branch, Islamic Azad University)
Ansari, Reza (Department of Mechanical Engineering, University of Guilan)
Publication Information
Structural Engineering and Mechanics / v.64, no.3, 2017 , pp. 329-337 More about this Journal
Abstract
This study concerns the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes using the finite element method. The beam elements are used to model the carbon-carbon and silicon-carbon bonds. Besides, spring elements are employed to simulate the van der Waals interactions between walls. The effects of nanotube arrangement, number of walls, geometrical parameters and boundary conditions on the frequencies of nested silicon-carbide and carbon nanotubes are investigated. It is shown that the double-walled nanotubes have larger frequencies than triple-walled nanotubes. Besides, replacing silicon carbide layers with carbon layers leads to increasing the frequencies of nested silicon-carbide and carbon nanotubes. Comparing the first ten mode shapes of nested nanotubes, it is observed that the mode shapes of armchair and zigzag nanotubes are almost the same.
Keywords
dynamic analysis; finite element method; numerical methods; size effect; nanostructures/nanotubes;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Borowiak-Palen, E., Ruemmeli, M.H., Gemming, T., Knupfer, M., Biedermann, K., Leonhardt, A., Pichler, T. and Kalenczuk, R.J. (2005), "Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution", J. Appl. Phys., 97(5), 056102.   DOI
2 Cheng, G., Chang, T.H., Qin, Q., Huang, H. and Zhu, Y. (2014), "Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density", Nano Lett., 14(2), 754-758.   DOI
3 Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2016), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., 57(1), 179-200.   DOI
4 Gelin, B.R. (1994), Molecular Modeling of Polymer Structures and Properties, Carl HanserVerlag, Munich, Germany.
5 Hajnayeb, A. and Khadem, S.E. (2015), "An analytical study on the nonlinear vibration of a double-walled carbon nanotube", Struct. Eng. Mech., 54(5), 987-998.   DOI
6 Hanchen, H. and Ghoniem, N. (1993), "Neutron displacement damage cross sections for SiC", J. Nucl. Mater., 199(3), 221-230.   DOI
7 Huczko, A., Bystrzejewski, M., Lange, H., Fabianowska, A., Cudzilo, S., Panas, A. and Szala, M. (2005), "Combustion synthesis as a novel method for production of 1-D SiCnanostructures", J. Phys. Chem. B, 109(34), 16244-16251.   DOI
8 Khani, N., Fakhrabadi, M.M.S., Vahabi, M. and Kamkari, B. (2014), "Modal analysis of silicon carbide nanotubes using structural mechanics", Appl. Phys. A, 116(4), 1687-1694.   DOI
9 Le, M.Q. (2014a), "Young's modulus prediction of hexagonal nanosheets and nanotubes based on dimensional analysis and atomistic simulations", Meccanica, 49(7), 1709-1719.   DOI
10 Le, M.Q. (2014b), "Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets", J. Comput. Theor. Nanosci., 11(6), 1458-1464.   DOI
11 Li, C. and Chou, T.W. (2004), "Elastic properties of single-walled carbon nanotubes in transverse directions", Phys. Rev. B, 69(7), 073401.   DOI
12 Lin, Z.J., Wang, L., Zhang, J., Guo, X.Y., Yang, W., Mao, H.K. and Zhao, Y. (2010), "Nanoscale twinning-induced elastic strengthening in silicon carbide nanowires", Scripta Mater., 63(10), 981-984.   DOI
13 Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B. and Burns, M. (1994), "Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies", J. Appl. Phys., 76(3), 1363-1398.   DOI
14 Nhut, J.M., Vieira, R., Pesant, L., Tessonnier, J.P., Keller, N., Ehret, G., Pham-Huu, C. and Ledoux, M.J. (2002), "Synthesis and catalytic uses of carbon and silicon carbide nanostructures", Catal. Today, 76(1), 11-32.   DOI
15 Odegard, G.M., Gates, T.S., Nicholson, L.M. and Wise, K.E. (2002), "Equivalent-continuum modeling of nano-structured materials", Compos. Sci. Technol., 62(14), 1869-1880.   DOI
16 Pan, H. and Si, X. (2009), "Molecular dynamics simulations of diameter dependence tensile behavior of silicon carbide nanotubes", Physica B: Condens. Mat., 404(12), 1809-1812.   DOI
17 Leach, A.R. (1996), Molecular Modeling Principles and Applications, Addison Wesley Longman Limited, London, England.
18 Pei, L.Z., Tang, Y.H., Chen, Y.W., Guo, C., Li, X.X., Yuan, Y. and Zhang, Y. (2006), "Preparation of silicon carbide nanotubes by hydrothermal method", J. Appl. Phys., 99(11), 114306.   DOI
19 Persson, C. and Lindefelt, U. (1996), "Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap", Phys. Rev. B, 54(15), 10257.   DOI
20 Rouhi, S. and Ansari, R. (2012), "Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets", Physica E: Low-Dimens. Syst. Nanostruct., 44(4), 764-772.   DOI
21 Sun, X.H., Li, C.P., Wong, W.K., Wong, N.B., Lee, C.S., Lee, S.T. and Teo, B.K. (2002), "Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes", J. Am. Chem. Soc., 124(48), 14464-14471.   DOI
22 Rouhi, S., Ansari, R. and Shahnazari, A. (2016), "Vibrational characteristics of single-layered boron nitride nanosheet/singlewalled boron nitride nanotube junctions using finite element modeling", Mater. Res. Express, 3(12), 125027.   DOI
23 Setoodeh, A.R., Jahanshahi, M. and Attariani, H. (2009), "Atomistic simulations of the buckling behavior of perfect and defective silicon carbide nanotubes", Comput. Mater. Sci., 47(2), 388-397.   DOI
24 Shahnazari, A., Ansari, R. and Rouhi, S. (2017), "A density functional theory-based finite element method to study the vibrational characteristics of zigzag phosphorene nanotubes", Appl. Phys. A, 123(4), 263.
25 Ansari, R., Mirnezhad, M. and Rouhi, H. (2015), "Buckling of multi-walled silicon carbide nanotubes under axial compression via a molecular mechanics model", Appl. Phys. A, 118(3), 845-854.   DOI
26 Wang, Z.G., Li, J.B., Gao, F. and Weber, W.J. (2010), "Tensile and compressive mechanical behavior of twinned silicon carbide nanowires", Acta Mater., 58(6), 1963-1971.   DOI
27 Zhang, A., Gu, X., Liu, F., Xie, Y., Ye, X. and Shi, W. (2012), "A study of the size-dependent elastic properties of silicon carbide nanotubes: First-principles calculations", Phys. Lett. A, 376(19), 1631-1635.   DOI
28 Ansari, R. and Rouhi, S. (2010), "Atomistic finite element model for axial buckling of single-walled carbon nanotubes", Physica E: Low-Dimens. Syst. Nanostruct., 43(1), 58-69.   DOI
29 Ansari, R., Rouhi, S., Aryayi, M. and Mirnezhad, M. (2012), "On the buckling behavior of single-walled silicon carbide nanotubes", ScientiaIranica, 19(6), 1984-1990.
30 Ansari, R., Rouhi, S., Mirnezhad, M. and Aryayi, M. (2013), "Stability characteristics of single-layered silicon carbide nanosheets under uniaxial compression", Physica E: Low-Dimens. Syst. Nanostruct., 53, 22-28.
31 Ansari, R., Rouhi, S. and Aryayi, M. (2016), "On the vibration of double-walled carbon nanotubes using molecular structural and cylindrical shell models", Int. J. Modern Phys. B, 30(5), 1650007.   DOI
32 Ansari, R. and Rouhi, S. (2016), "Vibrational analysis of singlelayered silicon carbide nanosheets and single-walled silicon carbide nanotubes using nanoscale finite element method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 231(18), 0954406216645129.   DOI