• Title/Summary/Keyword: Multi-walled carbon nanotube

Search Result 278, Processing Time 0.026 seconds

Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory

  • Rakrak, Kaddour;Zidour, Mohamed;Heireche, Houari;Bousahla, Abdelmoumen Anis;Chemi, Awda
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.31-44
    • /
    • 2016
  • This article is concerned with the free vibration problem for chiral double-walled carbon nanotube (DWCNTs) modelled using the non-local elasticity theory and Euler Bernoulli beam model. According to the governing equations of non-local Euler Bernoulli beam theory and the boundary conditions, the analytical solution is derived and two branches of transverse wave propagating are obtained. The numerical results obtained provide better representations of the vibration behaviour of double-walled carbon nanotube, where the aspect ratio of the (DWCNTs), the vibrational mode number, the small-scale coefficient and chirality of double-walled carbon nanotube on the frequency ratio (${\chi}^N$) of the (DWCNTs) are significant. In this work, the numerical results obtained can be used to predict and prevent the phenomenon of resonance for the forced vibration analyses of double -walled carbon nanotubes.

Characteristics of a Carbon Nanotube-based Tunnel Magnetoresistance Device

  • Kim, Jinhee;Woo, Byung-Chill;Kim, Jae-Ryoung;Park, Jong-Wan;So, Hye-Mi;Kim, Ju-Jin
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.98-100
    • /
    • 2002
  • Tunnel magnetoresistive devices using an individual multi-walled carbon nanotube were fabricated and their low-temperature electrical transport propertiers were investigated. With the ferromagnetic Co electrodes, the multi-walled carbon nanotube exhibited hysteretic magnetoresistance curve at low temperatures. Depending on the temperature and the bias current, the magnetoresistance ratio can be as high as 16% at the temperature of 2.2 K. Such high magnetoresistance ratio indicates a long diffusion length of the multi-walled carbon nanotube.

Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model

  • Dihaj, Ahmed;Zidour, Mohamed;Meradjah, Mustapha;Rakrak, Kaddour;Heireche, Houari;Chemi, Awda
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.335-342
    • /
    • 2018
  • The transverse free vibration of chiral double-walled carbon nanotube (DWCNTs) embedded in elastic medium is modeled by the non-local elasticity theory and Euler Bernoulli beam model. The governing equations are derived and the solutions of frequency are obtained. According to this study, the vibrational mode number, the small-scale coefficient, the Winkler parameter and chirality of double-walled carbon nanotube on the frequency ratio (xN) of the (DWCNTs) are studied and discussed. The new features of the vibration behavior of (DWCNTs) embedded in an elastic medium and the present solutions can be used for the static and dynamic analyses of double-walled carbon nanotubes.

Effect of Multi-Walled Carbon Nanotube on Rheological Behavior and Compressive Strength of Cement Paste (다중벽 탄소나노튜브가 시멘트 페이스트의 유변학적 물성 및 압축강도에 미치는 영향)

  • Kim, Ji-Hyun;Kim, Won-Woo;Moon, Jae-Heum;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.467-474
    • /
    • 2020
  • Carbon nanotube has excellent mechanical strength and functionality, so it has been utilized in various applications. In recent years, utilization of carbon nanotube in construction material has started to get interests from researchers in the area of construction materials. However, there is limited amount of work with respect to the rheological properties of cement paste using carbon nanotube. In this work, solution made of multi-walled carbon nanotube with dispersing agent of polyvinyl pyrrolidone was used to prepare cement paste specimens, and rheological properties and 28 day compressive strengths of cement paste using multi-walled carbon nanotube were measured. According to the experimental results, as the amounnt of multi-walled carbon nanotube increased, plastic viscosity and yield stress of cement paste specimens also increased. It was also found that such effect was higher with lower w/c cement paste specimens. With respect to the compressive strength, it was maximized at carbon nanotube content of 0.1wt.% for w/c 0.30 cement paste, whereas the maximum strength of w/c 0.40 cement paste was observed with carbon nanotube content of 0.2wt%.

Preparation and Properties of Aniline Terminated Waterborne Polyurethane/Multi-walled Carbon Nanotube Composite Coating Solutions (Aniline Terminated Waterborne Polyurethane/Multi-walled Carbon Nanotube 복합 코팅 용액의 제조 및 물성)

  • Hong, Min Gi;Kim, Byung Suk;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.403-409
    • /
    • 2012
  • Polyurethane prepolymers were prepared from poly (carbonate diol), isophrone diisocyanate, and dimethylol propionic acid. Then, aniline terminated waterborne polyurethane dispersion (ATWPUD) was synthesized by capping aniline on the NCO group of the prepolymer. Subsequently, ATWPUD was mixed with multi-walled carbon nanotube (MWCNT) to yield coating solutions, and the mixture was coated on the polycarbonate substrate. The surface resistance ($10^{7.6}{\sim}10^{7.7}{\Omega}/cm^2$) of coating films from ATWPUD showed better conducting properties than that ($10^{10.9}{\Omega}/cm^2$) from pure waterborne polyurethane dispersion (WPUD) when MWCNT was mixed. Also, the surface resistance of coating films was increased, but the pencil hardness and adhesion were decreased with increasing the amount of MWCNT added in the ATWPUD.

Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.657-668
    • /
    • 2017
  • In the most of previous studies, researchers have restricted their own studies to consider the effect of single walled carbon nanotubes as a reinforcement on the vibrational behavior of structures. In the present work, free vibration characteristics of functionally graded annular plates reinforced by multi-walled carbon nanotubes resting on Pasternak foundation are presented. The response of the elastic medium is formulated by the Winkler/Pasternak model. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of the multi-walled carbon nanotube/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the multi-walled carbon nanotubes wt% range considered. The 2-D generalized differential quadrature method as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the plates are investigated. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of annular plates.

Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity

  • Chemi, Awda;Heireche, Houari;Zidour, Mohamed;Rakrak, Kaddour;Bousahla, Abdelmoumen Anis
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.193-206
    • /
    • 2015
  • The present paper investigate the elastic buckling of chiral double-walled carbon nanotubes (DWCNTs) under axial compression. Using the non-local elasticity theory, Timoshenko beam model has been implemented. According to the governing equations of non-local theory, the analytical solution is derived and the solution for non-local critical buckling loads is obtained. The numerical results show the influence of non-local small-scale coefficient, the vibrational mode number, the chirality of carbon nanotube and aspect ratio of the (DWCNTs) on non-local critical buckling loads of the (DWCNTs). The results indicate the dependence of non-local critical buckling loads on the chirality of single-walled carbon nanotube with increase the non-local small-scale coefficient, the vibrational mode number and aspect ratio of length to diameter.

Preparation and rheological behavior of polystyrene/multi-walled carbon nanotube composites by latex technology

  • Woo, Dong-Kyun;Kim, Byung-Chul;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.185-191
    • /
    • 2009
  • Polystyrene/multi-walled carbon nanotube (PS/MWCNT) composites were prepared by the use of latex technology. The monodisperse PS latex was synthesized by an emulsifier-free emulsion polymerization from styrene/potassium persulfate/water system in the presence of ethanol. The MWCNTs were first treated with acid mixture to eliminate impurities, dispersed in deionized water driven by ultrasonicator, and then mixed with the PS latex. From these mixtures, PS/MWCNT composites were prepared by freeze-drying and subsequent compression molding. In the small-amplitude oscillatory shear experiments, both complex viscosity and storage modulus increased with increasing MWCNT content. A pronounced effect of MWCNT content was observed, resulting in larger storage modulus and stronger yield behavior at low frequencies when compared to unmodified PS. It showed a transition from viscous to elastic behavior with increasing MWCNT content. Over the MWCNT content of 3 wt%, the storage modulus was higher than the loss modulus across all frequencies.

Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix

  • Besseghier, Abderrahmane;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Benzair, Abdelnour
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • In the current study, the nonlinear vibration properties of an embedded zigzag single-walled carbon nanotube (SWCNT) are investigated. Winkler-type model is used to simulate the interaction of the zigzag SWCNTs with a surrounding elastic medium. The relation between deflection amplitudes and resonant frequencies of the SWCNT is derived through harmonic balance method. The equivalent Young's modulus and shear modulus for zigzag SWCNT are derived using an energy-equivalent model. The amplitude - frequency curves for large-amplitude vibrations are graphically illustrated. The simulation results show that the chirality of zigzag carbon nanolube as well as surrounding elastic medium play more important roles in the nonlinear vibration of the single-walled carbon nanotubes.

Tensile test of multi-walled carbon nanotube with different growth methods (성장방법이 서로 다른 탄소나노튜브의 인장시험)

  • Jang, Hoon-Sik;Lee, Yun-Hee;Baek, Un-Bong;Park, Jong-Seo;Nahm, Seung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.200-203
    • /
    • 2007
  • Carbon nanotubes (CNTs) have attracted an increasing attention due to their superior mechanical properties and potential application in industries. The strength of CNT has been predicted or calculated through several simulation techniques but actual experiments on stress-strain behavior are rare due to its dimensional limit, nanoscale positioning/manipulation, and instrumental resolution. We have attempted to observe straining responses of a multi-walled carbon nanotube (MWNT) with different growth methods by performing an in-situ tensile testing in a scanning electron microscope. Linear deformation and fracture behaviors of MWNT were successfully observed and its force-displacement curve was also measured from the bending stiffness and displacement of the force sensor and manipulator. We also obtained different tensile load of carbon nanotube with different growth methods.

  • PDF