DOI QR코드

DOI QR Code

Effect of Multi-Walled Carbon Nanotube on Rheological Behavior and Compressive Strength of Cement Paste

다중벽 탄소나노튜브가 시멘트 페이스트의 유변학적 물성 및 압축강도에 미치는 영향

  • Kim, Ji-Hyun (Multidisciplinary Infrastructure Research Laboratory, Pukyong National University) ;
  • Kim, Won-Woo (Korea Institute of Civil Engineering and Building Technology) ;
  • Moon, Jae-Heum (Korea Institute of Civil Engineering and Building Technology) ;
  • Chung, Chul-Woo (Division of Architectural and Fire Protection Engineering, Pukyong National University)
  • 김지현 (부경대학교 융복합인프라기술연구소) ;
  • 김원우 (한국건설기술연구원) ;
  • 문재흠 (한국건설기술연구원) ;
  • 정철우 (부경대학교 건축.소방공학부)
  • Received : 2020.10.19
  • Accepted : 2020.11.24
  • Published : 2020.12.30

Abstract

Carbon nanotube has excellent mechanical strength and functionality, so it has been utilized in various applications. In recent years, utilization of carbon nanotube in construction material has started to get interests from researchers in the area of construction materials. However, there is limited amount of work with respect to the rheological properties of cement paste using carbon nanotube. In this work, solution made of multi-walled carbon nanotube with dispersing agent of polyvinyl pyrrolidone was used to prepare cement paste specimens, and rheological properties and 28 day compressive strengths of cement paste using multi-walled carbon nanotube were measured. According to the experimental results, as the amounnt of multi-walled carbon nanotube increased, plastic viscosity and yield stress of cement paste specimens also increased. It was also found that such effect was higher with lower w/c cement paste specimens. With respect to the compressive strength, it was maximized at carbon nanotube content of 0.1wt.% for w/c 0.30 cement paste, whereas the maximum strength of w/c 0.40 cement paste was observed with carbon nanotube content of 0.2wt%.

탄소나노튜브는 뛰어난 역학적 성능 및 기능성으로 다양한 분야에서 활용되고 있는 나노소재이다. 탄소나노튜브를 건설재료 분야에 활용하는 연구는 현재의 화두 중 하나로, 예전에 비해 점차 많은 연구가 진행되고 있으나, 탄소나노튜브의 혼입률이 시멘트 페이스트의 압축강도 및 유변학적 물성에 미치는 영향을 검증한 문헌은 상대적으로 부족한 것으로 나타났다. 본 연구에서는 Polyvinyl Pyrrolidone을 사용하여 수용액 분산된 다중벽 탄소나노튜브를 이용하여 시멘트 페이스트를 제조하고, 이의 유변학적 물성 및 압축강도 특성을 확인하고자 하였다. 본 연구의 결과에 따르면, 탄소나노튜브의 혼입률이 증가할수록 소성점도 및 소성항복응력의 증가가 발생하였으며, 물시멘트비가 낮은 경우에 이러한 경향이 더욱 뚜렷하게 드러나는 것이 확인되었다. 탄소나노튜브 혼입 시멘트 페이스트의 압축강도는 물시멘트비가 0.30인 경우 탄소나노튜브 혼입률 0.1wt%에서, 물시멘트비가 0.40인 경우에는 혼입률 0.2wt%에서 최대가 되는 것으로 나타났다.

Keywords

References

  1. American Society for Testing and Materials C 109. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50mm] Cube Specimens), West Conshohocken: ASTM International.
  2. American Society for Testing and Materials C 305. (2020). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, West Conshohocken: ASTM International.
  3. Bakshi, S.R., Lahiri, D., Agarwal, A. (2013). Carbon nanotube reinforced metal matrix composites - a review, International Materials Reviews, 55(1), 41-64. https://doi.org/10.1179/095066009X12572530170543
  4. Birenboim, M., Nadiv, R., Alatawna, A., Buzaglo, M., Schahar, G., Lee, J., Kim, G., Peled, A., Regev, O. (2019). Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites, Composites Part B: Engineering, 161, 68-76. https://doi.org/10.1016/j.compositesb.2018.10.030
  5. Chan, L.Y., Andrawes, B. (2010). Finite element analysis of carbon nanotube/cement composite with degraded bond strength, Computational Materials Science, 47(4), 994-1004. https://doi.org/10.1016/j.commatsci.2009.11.035
  6. Che, G., Lakshimi, B.B., Martin, C.R., Fisher, E.R. (1999). Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production, American Chemical Society, 15(3), 750-758.
  7. Danoglidis, P.A., Konsta-Gdoutos, M.S., Gdoutos, E.E., Shah, S.P. (2016). Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars, Construction and Building Materials, 120, 265-274. https://doi.org/10.1016/j.conbuildmat.2016.05.049
  8. Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., Heben, M.J. (1997). Storage of hydrogen in single-walled carbon nanotubes, Nature, 386, 377-379. https://doi.org/10.1038/386377a0
  9. Hewwitt, C.A., Kaiser, A.B., Roth, S., Craps, M., Czerw, R., Carrol, D.L. (2012). Multilayered carbon nanotube/polymer composite based thermoelectric fabrics, Nano Letters, 12(3), 1307-1310. https://doi.org/10.1021/nl203806q
  10. Hwang, J.Y., Lim, B.K., Tiley, J., Banerjee, R., Hong, S.H. (2013). Interface analysis of ultra-high strength carbon nanotube/nickel composites processed by molecular level mixing, Carbon, 57, 282-287. https://doi.org/10.1016/j.carbon.2013.01.075
  11. Ijima, S. (1991). Helical microtubes of graphitic carbon, Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
  12. Kwon, H., Park, D.H., Silvain, J.F., Kawasaki, A. (2010). Investigation of carbon nanotube reinforced aluminum matrix composite materials, Composites Science and Technology, 70(3), 546-550. https://doi.org/10.1016/j.compscitech.2009.11.025
  13. Leonavicius, D., Pundiene, I., Girskas, G., Pranckeviciene, J., Kligys, M,, Kairyte, A. (2018). The effect of multi-walled carbon nanotubes on the rheological properties and hydration process of cement pastes, Construction and Building Materials, 189, 947-954. https://doi.org/10.1016/j.conbuildmat.2018.09.082
  14. Li, G.Y., Wang, P.M., Zhao, X. (2007). Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites, Cement and Concrete Composites, 29(5), 377-382. https://doi.org/10.1016/j.cemconcomp.2006.12.011
  15. Lim, M.J., Lee, H.K., Nam, I.W., Kim, H.K. (2007). Carbon nanotube/cement composites for crack monitoring of concrete structures, Composite Structures, 180, 741-750. https://doi.org/10.1016/j.compstruct.2017.08.042
  16. Lu, Z., Foroughi, J., Wang, C., Long, H. Wallace, G.G. (2018). Superelastic hybrid CNT/graphene fibers for wearable energy storage, Advanced Energy Materials, 8, 1702047. https://doi.org/10.1002/aenm.201702047
  17. Overney, G., Zhong, W., Tomanek, D. (1993). Structural rigidity and low frequency vibrational modes of long carbon tubules, Molecules and Clusters, 27(1), 93-96. https://doi.org/10.1007/BF01436769
  18. Park, M., Kim, H., Youngblood, J.P. (2008). Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films, Nanotechnology, 19(5), 055705. https://doi.org/10.1088/0957-4484/19/05/055705
  19. Shi, Y.S., Zhu, C.C., Qikun, W., Xin, L. (2003). Large area screen-printing cathode of CNT for FED, Diamond and Related Materials, 12(9), 1149-1452.
  20. Song, Y., Chen, H., Su, Z., Chen, X., Miao, L., Zhang, J., Cheng, X., Zhang, H. (2017). Highly compressible integrated supercapacitor-piezoresistance-sensor system with CNT-PDMS sponge for health monitoring, Small, 13, 1702091. https://doi.org/10.1002/smll.201702091
  21. Srivastava, S., Sharma, S.S., Agrawal, S., Kumar, S., Singh, M., Vijay, Y.K. (2010). Study of chemiresistor type CNT doped polyaniline gas sensor, Synthetic Metals, 160(5-6), 529-534. https://doi.org/10.1016/j.synthmet.2009.11.022
  22. Wang, J., Dia, J., Yarlagadda, T. (2005). Carbon nanotubeconducting-polymer composite nanowires, langmiur, 21(1), 9-12. https://doi.org/10.1021/la0475977
  23. Xu, D., Li, B., Wei, C., He, Y.B., Du, H., Chu, X., Qin, X., Yang, Q.H., Kang, F. (2014). Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions, Electrochimica Acta, 133, 254-261. https://doi.org/10.1016/j.electacta.2014.04.001
  24. Xu, S., Liu, J., Li, Q. (2015). Mechanical properties and microstructure of multi-walled carbon nanotube- reinforced cement paste, Construction and Building Materials, 76, 16-23. https://doi.org/10.1016/j.conbuildmat.2014.11.049