Preparation and rheological behavior of polystyrene/multi-walled carbon nanotube composites by latex technology

  • Woo, Dong-Kyun (Department of Polymer Engineering, The University of Suwon) ;
  • Kim, Byung-Chul (Department of Polymer Engineering, The University of Suwon) ;
  • Lee, Seong-Jae (Department of Polymer Engineering, The University of Suwon)
  • Published : 2009.09.30

Abstract

Polystyrene/multi-walled carbon nanotube (PS/MWCNT) composites were prepared by the use of latex technology. The monodisperse PS latex was synthesized by an emulsifier-free emulsion polymerization from styrene/potassium persulfate/water system in the presence of ethanol. The MWCNTs were first treated with acid mixture to eliminate impurities, dispersed in deionized water driven by ultrasonicator, and then mixed with the PS latex. From these mixtures, PS/MWCNT composites were prepared by freeze-drying and subsequent compression molding. In the small-amplitude oscillatory shear experiments, both complex viscosity and storage modulus increased with increasing MWCNT content. A pronounced effect of MWCNT content was observed, resulting in larger storage modulus and stronger yield behavior at low frequencies when compared to unmodified PS. It showed a transition from viscous to elastic behavior with increasing MWCNT content. Over the MWCNT content of 3 wt%, the storage modulus was higher than the loss modulus across all frequencies.

Keywords

References

  1. Goodall, A. R., M. C. Wilkinson and J. Hearn, 1977, Mechanism of emulsion polymerization of styrene in soap-free systems, J. Polym. Sci., Polym. Chem. 15, 2193-2218 https://doi.org/10.1002/pol.1977.170150912
  2. Gorga, R. E. and R. E. Cohen, 2004, Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes, J. Polym. Sci., Polym. Phys. 42, 2690-2702 https://doi.org/10.1002/polb.20126
  3. Han, C. D., J. Kim and J. K. Kim, 1989, Determination of the order-disorder transition temperature of block copolymers, Macromolecules 22, 383-394 https://doi.org/10.1021/ma00191a071
  4. Kim, B. C. and S. J. Lee, 2008, Silicate dispersion and rheological properties of high impact polystyrene/organoclay nanocomposites via in situ polymerization, Korea-Australia Rheol. J. 20, 227-233
  5. Kim, P., L. Shi, A. Majumdar and P. L. McEuen, 2001, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87, 215502-215505 https://doi.org/10.1103/PhysRevLett.87.215502
  6. Kim, S. T., H. J. Choi and S. M. Hong, 2007, Bulk polymerized polystyrene in the presence of multi-walled carbon nanotubes, Colloid Polym. Sci. 285, 593-598 https://doi.org/10.1007/s00396-006-1599-z
  7. Krishnamoorti, R. and K. Yurekli, 2001, Rheology of polymer layered silicate nanocomposites, Curr. Opin. Colloid Interface Sci. 6, 464-470 https://doi.org/10.1016/S1359-0294(01)00121-2
  8. Lee, J., C. K. Hong, S. Choe and S. E. Shim, 2007, Synthesis of polystyrene/silica composite particles by soap-free emulsion polymerization using positively charged colloidal silica, J. Colloid Interface Sci. 310, 112-120 https://doi.org/10.1016/j.jcis.2006.11.008
  9. Lee, K. M. and C. D. Han, 2003, Rheology of organoclay nanocomposites: effects of polymer matrix/organoclay compatibility and the gallery distance of organoclay, Macromolecules 36, 7165-7178 https://doi.org/10.1021/ma030302w
  10. Odian, G., 1991, Principles of Polymerization, 3rd ed., John Wiley & Sons, New York
  11. Ou, J. L., J. K. Yang and H. Chen, 2001, Styrene/potassium persulfate/water systems: effects of hydrophilic comonomers and solvent additives on the nucleation mechanism and the particle size, Eur. Polym J. 37, 789-799 https://doi.org/10.1016/S0014-3057(00)00175-0
  12. Park, S. J., S. T. Lim, M. S. Cho, H. M. Kim, J. Joo and H. J. Choi, 2005, Electrical properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite, Current Appl. Phys. 5, 302-304 https://doi.org/10.1016/j.cap.2004.02.013
  13. Potschke, P., T. D. Fornes and D. R. Paul, 2002, Rheological behavior of multiwalled carbon nanotube/polycarbonate composites, Polymer 43, 3247-3255 https://doi.org/10.1016/S0032-3861(02)00151-9
  14. Regev, O., P. N. B. EIKati, J. Loos and C. E. Konig, 2004, Preparation of conductive nanotube-polymer composites using latex technology, Adv Mater. 16, 248-251 https://doi.org/10.1002/adma.200305728
  15. Safadi, B., R. Andrews and E. A. Grulke, 2002, Multi-walled carbon nanotube polymer composites: synthesis and characterization of thin films, J. Appl. Polym. Sci. 84, 2660-2669 https://doi.org/10.1002/app.10436
  16. Sandler, J., M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte and A. H. Wildle, 1999, Development of a dispersion processfor carbon nanotubes in an epoxy matrix and the resulting electrical properties, Polymer 40, 5967-5971 https://doi.org/10.1016/S0032-3861(99)00166-4
  17. Shenoy, A. V., 1999, Rheology of Filled Polymer Systems, Kluwer Academic Publishers, Dordrecht
  18. Sun, J. and L. Gao, 2003, Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation, Carbon 41, 1063-1068 https://doi.org/10.1016/S0008-6223(02)00441-4
  19. Treacy, M. M. J., T. W. Ebbesen and J. M. Gibson, 1996, Exceptionally high Young/s modulus observed for individual carbon nanotubes, Nature 381, 678-680 https://doi.org/10.1038/381678a0
  20. Wu, T. M., E. C. Chen, 2008, Preparation and characterization of conductive carbon nanotube-polystyrene nanocomposites using latex technology, Comp. Sci. Tech. 68, 2254-2259 https://doi.org/10.1016/j.compscitech.2008.04.010
  21. Yu, J., K. Lu, E. Sourty, N. Grossiord, C. E. Koning and J. Loos, 2007, Characterization of conductive multiwall carbon nanotube/polystyrene composites preparεd by latex technology, Carbon 45, 2897-2903 https://doi.org/10.1016/j.carbon.2007.10.005
  22. Zhang, Z., J. Zhang, P. Chen, B. Zhang, J He and G. H. Hu, 2006, Enhanced interactions between multi-walled carbon nanotubes and polystyrene induced by melt mixing, Carbon 44, 692-698 https://doi.org/10.1016/j.carbon.2005.09.027
  23. Zhao, J., A. B. Morgan and J. D. Harris, 2005, Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion, Polymer 46, 8641-8660 https://doi.org/10.1016/j.polymer.2005.04.038