• Title/Summary/Keyword: Multi-sensor data convergence

Search Result 55, Processing Time 0.032 seconds

Additive Manufacturing for Sensor Integrated Components (센서 융합형 지능형 부품 제조를 위한 적층 제조 기술 연구)

  • Jung, Im Doo;Lee, Min Sik;Woo, Young Jin;Kim, Kyung Tae;Yu, Ji-Hun
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The convergence of artificial intelligence with smart factories or smart mechanical systems has been actively studied to maximize the efficiency and safety. Despite the high improvement of artificial neural networks, their application in the manufacturing industry has been difficult due to limitations in obtaining meaningful data from factories or mechanical systems. Accordingly, there have been active studies on manufacturing components with sensor integration allowing them to generate important data from themselves. Additive manufacturing enables the fabrication of a net shaped product with various materials including plastic, metal, or ceramic parts. With the principle of layer-by-layer adhesion of material, there has been active research to utilize this multi-step manufacturing process, such as changing the material at a certain step of adhesion or adding sensor components in the middle of the additive manufacturing process. Particularly for smart parts manufacturing, researchers have attempted to embed sensors or integrated circuit boards within a three-dimensional component during the additive manufacturing process. While most of the sensor embedding additive manufacturing was based on polymer material, there have also been studies on sensor integration within metal or ceramic materials. This study reviews the additive manufacturing technology for sensor integration into plastic, ceramic, and metal materials.

Design of a Smart Application Using Ad-Hoc Sensor Networks based on Bluetooth (블루투스기반 애드 혹 센서망을 이용한 스마트 응용 설계)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.243-248
    • /
    • 2013
  • With rapid growth and fast diffusion of smartphone technologies, many users are deeply concerned about the smart applications and many mobile applications converged with various related technologies are rapidly disseminated. Especially, the convergence technologies like mobile apps that can establish the wireless ad hoc network between smartphone and other peripherals and exchange data are appear and progressed continuously. In this paper, we design and implement the smart app using bluetooth based wireless ad hoc sensor network that can connect smartphone with sensors and exchange data for various smart applications. The proposed smart application in this paper collects data obtained from more than 2 multi-sensors in real time and fulfills the decision making function by storing data at the database and analysing it. The smart application designed and implemented in this paper is the healthcare application that can analyze and evaluate the patient's health condition with sensing data from multi-sensors in real time through bluetooth module.

Advanced Adaptive Chain-Based EEACP Protocol Improvement Centered on Energy Efficiency in WSN Environment (WSN 환경에서 에너지 효율을 중심으로 한 적응형 체인 기반 EEACP 프로토콜 개선)

  • DaeKyun Cho;YeongWan Kim;GunWoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.879-884
    • /
    • 2024
  • Wireless sensor network technology is becoming increasingly important with the advancement of the Fourth Industrial Revolution. Consequently, various protocols such as LEACH, PEGASIS, and EEACP have been developed in an attempt to increase energy efficiency. However, the EEACP protocol still has room for improvement in terms of energy consumption during transmission. Particularly, inefficient paths associated with data reception settings may compromise the network's survivability. The proposed A-EEACP protocol optimizes data transmission direction around the sink node to reduce energy consumption and enhance the network's survivability.

Weight Adjustment Scheme Based on Hop Count in Q-routing for Software Defined Networks-enabled Wireless Sensor Networks

  • Godfrey, Daniel;Jang, Jinsoo;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.22-30
    • /
    • 2022
  • The reinforcement learning algorithm has proven its potential in solving sequential decision-making problems under uncertainties, such as finding paths to route data packets in wireless sensor networks. With reinforcement learning, the computation of the optimum path requires careful definition of the so-called reward function, which is defined as a linear function that aggregates multiple objective functions into a single objective to compute a numerical value (reward) to be maximized. In a typical defined linear reward function, the multiple objectives to be optimized are integrated in the form of a weighted sum with fixed weighting factors for all learning agents. This study proposes a reinforcement learning -based routing protocol for wireless sensor network, where different learning agents prioritize different objective goals by assigning weighting factors to the aggregated objectives of the reward function. We assign appropriate weighting factors to the objectives in the reward function of a sensor node according to its hop-count distance to the sink node. We expect this approach to enhance the effectiveness of multi-objective reinforcement learning for wireless sensor networks with a balanced trade-off among competing parameters. Furthermore, we propose SDN (Software Defined Networks) architecture with multiple controllers for constant network monitoring to allow learning agents to adapt according to the dynamics of the network conditions. Simulation results show that our proposed scheme enhances the performance of wireless sensor network under varied conditions, such as the node density and traffic intensity, with a good trade-off among competing performance metrics.

A Study on Realization of Display System for Monitoring of Heavy Equipment State (중장비 상태 감시를 위한 디스플레이 시스템 구현에 대한 연구)

  • Kim, Kee Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.263-269
    • /
    • 2019
  • In this study, the characteristics and operation of a multi-purpose loader equipped with various sensors such as a sensor capable of measuring the boom length, an angle sensor capable of measuring the tilt of the left and right sides of the boom and the loader, and a load cell capable of measuring the weight during lifting We have implemented a system that displays related data values. The configuration of the system reads the values from the sensors, sends them to the vehicle controller, and transmits the calculated results of the overturn rate and other important information to the display device using the CANOpen protocol. Also, in the calculation of the overturn ratio, the structure of the multi-purpose loader is similar to that of the crane belonging to the heavy equipment, and the crane overturn rate calculation method is used. Through this study, we can observe the condition of the heavy equipment and recognize the emergency situations such as abalone through the display device.

3-D Hetero-Integration Technologies for Multifunctional Convergence Systems

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2015
  • Since CMOS device scaling has stalled, three-dimensional (3-D) integration allows extending Moore's law to ever high density, higher functionality, higher performance, and more diversed materials and devices to be integrated with lower cost. 3-D integration has many benefits such as increased multi-functionality, increased performance, increased data bandwidth, reduced power, small form factor, reduced packaging volume, because it vertically stacks multiple materials, technologies, and functional components such as processor, memory, sensors, logic, analog, and power ICs into one stacked chip. Anticipated applications start with memory, handheld devices, and high-performance computers and especially extend to multifunctional convengence systems such as cloud networking for internet of things, exascale computing for big data server, electrical vehicle system for future automotive, radioactivity safety system, energy harvesting system and, wireless implantable medical system by flexible heterogeneous integrations involving CMOS, MEMS, sensors and photonic circuits. However, heterogeneous integration of different functional devices has many technical challenges owing to various types of size, thickness, and substrate of different functional devices, because they were fabricated by different technologies. This paper describes new 3-D heterogeneous integration technologies of chip self-assembling stacking and 3-D heterogeneous opto-electronics integration, backside TSV fabrication developed by Tohoku University for multifunctional convergence systems. The paper introduce a high speed sensing, highly parallel processing image sensor system comprising a 3-D stacked image sensor with extremely fast signal sensing and processing speed and a 3-D stacked microprocessor with a self-test and self-repair function for autonomous driving assist fabricated by 3-D heterogeneous integration technologies.

Design of Pattern Array Method for Multi Data Augmentation of Power Equipment uisng Single Image Pattern (단일 이미지 패턴을 이용한 다수의 전력설비 데이터를 증강하기 위한 패턴 배열화 기법 설계)

  • Kim, Seoksoo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.11
    • /
    • pp.1-8
    • /
    • 2020
  • As power consumption is maximized, research on augmented reality-based monitoring systems for on-site facility managers to maintain and repair power facilities is being actively conducted as individual power brokerages and power production facilities increase. However, in the case of existing augmented reality-based monitoring systems, it is difficult to accurately detect patterns due to problems such as external environment, facility complexity, and interference with the lighting environment, and it is not possible to match various sensing information and service information for power facilities to one pattern. there is a problem. For this reason, since sensor information is matched using a single image pattern for each sensor of a power facility, a plurality of image patterns are required to augment and provide all information. In this paper, we propose a single image pattern arrangement method that matches and provides a plurality of information through an array combination of feature patterns in a single image composed of a plurality of feature patterns.

Energy-efficient routing protocol based on Localization Identification and RSSI value in sensor network (센서 네트워크에서 RSSI 값과 위치 추정 기반의 에너지 효율적인 라우팅 프로토콜)

  • Kim, Yong-Tae;Jeong, Yoon-Su;Park, Gil-Cheol
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.339-345
    • /
    • 2014
  • This study has a purpose that improves efficiency of energy management and adaptation followed by movement of node better than the various early studied routing techniques. The purpose of this paper is the technique that uses RSSI value and location of sensor that is received by each sensor node to routing. This sduty does not save node information of 1-hop distance. And it solves energy-inefficient traffic problem that happens during data exchange process for middle node selection in close range multi hop transmission technique. The routing protocol technique that is proposed in this study selects a node relevant to the range of transmission which is set for RSSI value that is received by each node and selects the closest node as a middle node followed by location data. Therefore, it is for not exhaustion of node's energy by managing energy efficiently and cutting data transmission consuming until the destination node.

3D Markov chain based multi-priority path selection in the heterogeneous Internet of Things

  • Wu, Huan;Wen, Xiangming;Lu, Zhaoming;Nie, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5276-5298
    • /
    • 2019
  • Internet of Things (IoT) based sensor networks have gained unprecedented popularity in recent years. With the exponential explosion of the objects (sensors and mobiles), the bandwidth and the speed of data transmission are dwarfed by the anticipated emergence of IoT. In this paper, we propose a novel heterogeneous IoT model integrated the power line communication (PLC) and WiFi network to increase the network capacity and cope with the rapid growth of the objects. We firstly propose the mean transmission delay calculation algorithm based the 3D Markov chain according to the multi-priority of the objects. Then, the attractor selection algorithm, which is based on the adaptive behavior of the biological system, is exploited. The combined the 3D Markov chain and the attractor selection model, named MASM, can select the optimal path adaptively in the heterogeneous IoT according to the environment. Furthermore, we verify that the MASM improves the transmission efficiency and reduce the transmission delay effectively. The simulation results show that the MASM is stable to changes in the environment and more applicable for the heterogeneous IoT, compared with the other algorithms.

Anomaly Detection of Facilities and Non-disruptive Operation of Smart Factory Using Kubernetes

  • Jung, Guik;Ha, Hyunsoo;Lee, Sangjun
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1071-1082
    • /
    • 2021
  • Since the smart factory has been recently recognized as an industrial core requirement, various mechanisms to ensure efficient and stable operation have attracted much attention. This attention is based on the fact that in a smart factory environment where operating processes, such as facility control, data collection, and decision making are automated, the disruption of processes due to problems such as facility anomalies causes considerable losses. Although many studies have considered methods to prevent such losses, few have investigated how to effectively apply the solutions. This study proposes a Kubernetes based system applied in a smart factory providing effective operation and facility management. To develop the system, we employed a useful and popular open source project, and adopted deep learning based anomaly detection model for multi-sensor anomaly detection. This can be easily modified without interruption by changing the container image for inference. Through experiments, we have verified that the proposed method can provide system stability through nondisruptive maintenance, monitoring and non-disruptive updates for anomaly detection models.