• Title/Summary/Keyword: Multi-level Optimization

Search Result 276, Processing Time 0.023 seconds

Multi-objective Optimization of Pedestrian Wind Comfort and Natural Ventilation in a Residential Area

  • H.Y. Peng;S.F. Dai;D. Hu;H.J. Liu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.315-320
    • /
    • 2022
  • With the rapid development of urbanization the problems of pedestrian-level wind comfort and natural ventilation of tall buildings are becoming increasingly prominent. The velocity at the pedestrian level ($\overline{MVR}$) and variation of wind pressure coefficients $\overline{{\Delta}C_p}$ between windward and leeward surfaces of tall buildings were investigated systematically through numerical simulations. The examined parameters included building density ρ, height ratio of building αH, width ratio of building αB, and wind direction θ. The linear and quadratic regression analyses of $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were conducted. The quadratic regression had better performance in predicting $\overline{MVR}$ and $\overline{{\Delta}C_p}$ than the linear regression. $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were optimized by the NSGA-II algorithm. The LINMAP and TOPSIS decision-making methods demonstrated better capability than the Shannon's entropy approach. The final optimal design parameters of buildings were ρ = 20%, αH = 4.5, and αB = 1, and the wind direction was θ = 10°. The proposed method could be used for the optimization of pedestrian-level wind comfort and natural ventilation in a residential area.

The automated optimum design of steel truss structures (철골 트러스 구조의 자동화 최적설계)

  • Pyeon, Hae-Wan;Kim, Yong-Joo;Kim, Soo-Won;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.143-155
    • /
    • 2001
  • Generally, truss design has been determined by the designer's experience and intuition. But if we perform the most economical structural design we must consider not only cross-sections of members but also configurations(howe, warren and pratt types etc.) of single truss as the number of panel and truss height. The purpose of this study is to develope automated optimum design techniques for steel truss structures considering cross-sections of members and shape of trusses simultaneously. As the results, it could be possible to find easily the optimum solutions subject to design conditions at the preliminary structural design stage of the steel truss structures. In this study, the objective function is expressed as the whole member weight of trusses, and the applied constraints are as stresses, slenderness ratio, local buckling, deflection, member cross-sectional dimensions and truss height etc. The automated optimum design algorithm of this study is divided into three-level procedures. The first level on member cross-sectional optimization is performed by the sequential unconstrained minimization technique(SUMT) using dynamic programming method. And the second level about truss height optimization is applied for obtaining the optimum truss height by three-equal interval search method. The last level of optimization is applied for obtaining the optimum panel number of truss by integer programming method. The algorithm of multi-level optimization programming technique proposed in this study is more helpful for the economical design of plane trusses as well as space trusses.

  • PDF

Operating condition optimization of liquid metal heat pipe using deep learning based genetic algorithm: Heat transfer performance

  • Ik Jae Jin;Dong Hun Lee;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2610-2624
    • /
    • 2024
  • Liquid metal heat pipes play a critical role in various high-temperature applications, with their optimization being pivotal to achieving optimal thermal performance. In this study, a deep learning based genetic algorithm is suggested to optimize the operating conditions of liquid metal heat pipes. The optimization performance was investigated in both single and multi-variable optimization schemes, considering the operating conditions of heat load, inclination angle, and filling ratio. The single-variable optimization indicated reasonable performance for various conditions, reinforcing the potential applicability of the optimization method across a broad spectrum of high-temperature industries. The multi-variable optimization revealed an almost congruent performance level to single-variable optimization, suggesting that the robustness of optimization method is not compromised with additional variables. Furthermore, the generalization performance of the optimization method was investigated by conducting an experimental investigation, proving a similar performance. This study underlines the potential of optimizing the operating condition of heat pipes, with significant consequences in sectors such as high temperature field, thereby offering a pathway to more efficient, cost-effective thermal solutions.

Review of Studies on V-METRIC Related Models (V-METRIC 관련연구들에 관한 고찰)

  • Kim, Yoon Hwa;Lee, Sung Yong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.47-57
    • /
    • 2016
  • As the inventory costs of repairable items in military logistics continue to increase, many studies for optimal inventory level of these items are being carried out in advanced countries, including the US, to reduce these costs. Research on inventory level optimization for repairable items aimed to achieve the availability goal of a system with a MIME(Multi Indenture Multi Echelon) repair policy structure first began with Sherbrooke's METRIC and developed into various types. This research is to analyze and compare recent V-METRIC related studies to search for another variation in this field. This paper mainly looks at how to determine optimum inventory level for each repairable item to achieve a specific availability target within a limited budget, and also how to minimize inventory cost while achieving its availability target by determining optimal inventory level of each repairable item.

Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.597-609
    • /
    • 2010
  • A problem formulation and solution methodology for design optimization of laminated thin-walled composite beams of generic section is presented. Objective functions and constraint equations are given in the form of beam stiffness. For two different problems one for open section and the other for closed section, the objective function considered is bending stiffness about x-axis. Depending upon the case, one can consider bending, torsional and axial stiffnesses. The different search and optimization algorithm, known as Evolution Strategies (ES) has been applied to find the optimal fibre orientation of composite laminates. A multi-level optimization approach is also implemented by narrowing down the size of search space for individual design variables in each successive level of optimization process. The numerical results presented demonstrate the computational advantage of the proposed method "Evolution strategies" which become pronounced to solve optimization of thin-walled composite beams of generic section.

Development of Fitness and Interactive Decision Making in Multi-Objective Optimization (다목적 유전자 알고리즘에 있어서 적합도 평가방법과 대화형 의사결정법의 제안 )

  • Yeboon Yun;Dong Joon Park;Min Yoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.109-117
    • /
    • 2022
  • Most of real-world decision-making processes are used to optimize problems with many objectives of conflicting. Since the betterment of some objectives requires the sacrifice of other objectives, different objectives may not be optimized simultaneously. Consequently, Pareto solution can be considered as candidates of a solution with respect to a multi-objective optimization (MOP). Such problem involves two main procedures: finding Pareto solutions and choosing one solution among them. So-called multi-objective genetic algorithms have been proved to be effective for finding many Pareto solutions. In this study, we suggest a fitness evaluation method based on the achievement level up to the target value to improve the solution search performance by the multi-objective genetic algorithm. Using numerical examples and benchmark problems, we compare the proposed method, which considers the achievement level, with conventional Pareto ranking methods. Based on the comparison, it is verified that the proposed method can generate a highly convergent and diverse solution set. Most of the existing multi-objective genetic algorithms mainly focus on finding solutions, however the ultimate aim of MOP is not to find the entire set of Pareto solutions, but to choose one solution among many obtained solutions. We further propose an interactive decision-making process based on a visualized trade-off analysis that incorporates the satisfaction of the decision maker. The findings of the study will serve as a reference to build a multi-objective decision-making support system.

Pareto-Based Multi-Objective Optimization for Two-Block Class-Based Storage Warehouse Design

  • Sooksaksun, Natanaree
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.331-338
    • /
    • 2012
  • This research proposes a Pareto-based multi-objective optimization approach to class-based storage warehouse design, considering a two-block warehouse that operates under the class-based storage policy in a low-level, picker-to-part and narrow aisle warehousing system. A mathematical model is formulated to determine the number of aisles, the length of aisle and the partial length of each pick aisle to allocate to each product class that minimizes the travel distance and maximizes the usable storage space. A solution approach based on multiple objective particle swarm optimization is proposed to find the Pareto front of the problems. Numerical examples are given to show how to apply the proposed algorithm. The results from the examples show that the proposed algorithm can provide design alternatives to conflicting warehouse design decisions.

Converter Utilization Ratio Enhancement in the THD Optimization of Cascaded H-Bridge 7-level Inverters

  • Khamooshi, Reza;Namadmalan, Alireza;Moghani, Javad Shokrollahi
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.173-181
    • /
    • 2016
  • In this paper, a new technique for harmonic optimization in cascaded H-bridge 7-level inverters is proposed. The suggested strategy is based on minimizing an objective function which simultaneously optimizes the converter utilization and Total Harmonic Distortion (THD). The Switch Utilization Ratio (SUR) is formulized for both the phase and line-line voltages of a 7-level inverter and is considered in the final objective functions. Based upon the SUR formula, utilization ratio enhancement will reduce the value of feeding DC links, which improves the efficiency and lifetime of the circuit components due to lower voltage stresses and losses. In order to achieve more effective solution in different modulation indices, it is assumed that the DC sources can be altered. Experimental validation is presented based on a three-phase 7-level inverter prototype.

Fractional Order Modeling and Control of Twin Rotor Aero Dynamical System using Nelder Mead Optimization

  • Ijaz, Salman;Hamayun, Mirza Tariq;Yan, Lin;Mumtaz, Muhammad Faisal
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1863-1871
    • /
    • 2016
  • This paper presents an application of fractional order controller for the control of multi input multi output twin rotor aerodynamic system. Dynamics of the considered system are highly nonlinear and there exists a significant cross-coupling between the horizontal and vertical axes (pitch & yaw). In this paper, a fractional order model of twin rotor aerodynamic system is identified using input output data from nonlinear system. Based upon identified fractional order model, a fractional order PID controller is designed to control the angular position of level bar of twin rotor aerodynamic system. The parameters of controller are tuned using Nelder-Mead optimization and compared with particle swarm optimization techniques. Simulation results on the nonlinear model show a significant improvement in the performance of fractional order PID controller as compared to a classical PID controller.

A Multi-Point Design Optimization of a Space Launcher Nose Shapes Using Response Surface Method (반응면 기법을 이용한 발사체 선두부 다점 최적설계)

  • Kim Sang-Jin;Seon Yong-Hee;Lee Jae-Woo;Byun Yung-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.46-53
    • /
    • 2000
  • To improve the performance at all design points, multi-point optimization method is implemented for the nose fairing shape design of space launcher. The response surface method is used to effectively reduce the huge computational loads during the optimization process. The drag is selected as the objective function, and the surface heat transfer characteristics, and the internal volume of the nose fairing ate considered as design constraints. Full Wavier-Stokes equations are selected as governing equations. Two points drag minimization, and two points drag / heat flux optimization were successfully performed and configurations which have good performance for the wide operation range were derived. By considering three design points, the space launcher shape which undergoes the least drag during whole flight mission was designed. For all the design cases, the constructed response surfaces show good confidence level with only 23 design points with the proper stretching of the design space.

  • PDF